Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328138

RESUMEN

Human type-II topoisomerases, TOP2A and TOP2B, remove transcription associated DNA supercoiling, thereby affecting gene-expression programs, and have recently been associated with 3D genome architecture. Here, we study the regulatory roles of TOP2 paralogs in response to estrogen, which triggers an acute transcriptional induction that involves rewiring of genome organization. We find that, whereas TOP2A facilitates transcription, as expected for a topoisomerase, TOP2B limits the estrogen response. Consistent with this, TOP2B activity is locally downregulated upon estrogen treatment to favor the establishment and stabilization of regulatory chromatin contacts, likely through an accumulation of DNA supercoiling. We show that estrogen-mediated inhibition of TOP2B requires estrogen receptor α (ERα), a non-catalytic function of TOP2A, and the action of the atypical SUMO-ligase ZATT. This mechanism of topological transcriptional-control, which may be shared by additional gene-expression circuits, highlights the relevance of DNA topoisomerases as central actors of genome dynamics.

2.
Bioorg Chem ; 141: 106929, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37879181

RESUMEN

Compounds that mimic the biological properties of glycosaminoglycans (GAGs) and can be more easily prepared than the native GAG oligosaccharides are highly demanded. Here, we present the synthesis of sulfated oligosaccharides displaying a perfluorinated aliphatic tag at the reducing end as GAG mimetics. The preparation of these molecules was greatly facilitated by the presence of the fluorinated tail since the reaction intermediates were isolated by simple fluorous solid-phase extraction. Fluorescence polarization competition assays indicated that the synthesized oligosaccharides interacted with two heparin-binding growth factors, midkine (MK) and FGF-2, showing higher binding affinities than the natural oligosaccharides, and can be therefore considered as useful GAG mimetics. Moreover, NMR experiments showed that the 3D structure of these compounds is similar to that of the native sequences, in terms of sugar ring and glycosidic linkage conformations. Finally, we also demonstrated that these derivatives are able to block the MK-stimulating effect on NIH3T3 cells growth.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Sulfatos , Animales , Ratones , Células 3T3 NIH , Glicosaminoglicanos , Oligosacáridos/química
3.
J Med Genet ; 60(11): 1133-1141, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37460201

RESUMEN

BACKGROUND: SUMOylation involves the attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on thousands of substrates with target-specific effects on protein function. Sentrin-specific proteases (SENPs) are proteins involved in the maturation and deconjugation of SUMO. Specifically, SENP7 is responsible for processing polySUMO chains on targeted substrates including the heterochromatin protein 1α (HP1α). METHODS: We performed exome sequencing and segregation studies in a family with several infants presenting with an unidentified syndrome. RNA and protein expression studies were performed in fibroblasts available from one subject. RESULTS: We identified a kindred with four affected subjects presenting with a spectrum of findings including congenital arthrogryposis, no achievement of developmental milestones, early respiratory failure, neutropenia and recurrent infections. All died within four months after birth. Exome sequencing identified a homozygous stop gain variant in SENP7 c.1474C>T; p.(Gln492*) as the probable aetiology. The proband's fibroblasts demonstrated decreased mRNA expression. Protein expression studies showed significant protein dysregulation in total cell lysates and in the chromatin fraction. We found that HP1α levels as well as different histones and H3K9me3 were reduced in patient fibroblasts. These results support previous studies showing interaction between SENP7 and HP1α, and suggest loss of SENP7 leads to reduced heterochromatin condensation and subsequent aberrant gene expression. CONCLUSION: Our results suggest a critical role for SENP7 in nervous system development, haematopoiesis and immune function in humans.

4.
Proc Natl Acad Sci U S A ; 120(28): e2302143120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399380

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease affecting motor neurons and characterized by microglia-mediated neurotoxic inflammation whose underlying mechanisms remain incompletely understood. In this work, we reveal that MAPK/MAK/MRK overlapping kinase (MOK), with an unknown physiological substrate, displays an immune function by controlling inflammatory and type-I interferon (IFN) responses in microglia which are detrimental to primary motor neurons. Moreover, we uncover the epigenetic reader bromodomain-containing protein 4 (Brd4) as an effector protein regulated by MOK, by promoting Ser492-phospho-Brd4 levels. We further demonstrate that MOK regulates Brd4 functions by supporting its binding to cytokine gene promoters, therefore enabling innate immune responses. Remarkably, we show that MOK levels are increased in the ALS spinal cord, particularly in microglial cells, and that administration of a chemical MOK inhibitor to ALS model mice can modulate Ser492-phospho-Brd4 levels, suppress microglial activation, and modify the disease course, indicating a pathophysiological role of MOK kinase in ALS and neuroinflammation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas que Contienen Bromodominio , Proteínas Quinasas Activadas por Mitógenos , Enfermedades Neurodegenerativas , Animales , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Modelos Animales de Enfermedad , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas que Contienen Bromodominio/genética , Proteínas que Contienen Bromodominio/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo
6.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35887358

RESUMEN

SUMOylation is a post-translational modification that has emerged in recent decades as a mechanism involved in controlling diverse physiological processes and that is essential in vertebrates. The SUMO pathway is regulated by several enzymes, proteases and ligases being the main actors involved in the control of sumoylation of specific targets. Dysregulation of the expression, localization and function of these enzymes produces physiological changes that can lead to the appearance of different types of cancer, depending on the enzymes and target proteins involved. Among the most studied proteases and ligases, those of the SENP and PIAS families stand out, respectively. While the proteases involved in this pathway have specific SUMO activity, the ligases may have additional functions unrelated to sumoylation, which makes it more difficult to study their SUMO-associated role in cancer process. In this review we update the knowledge and advances in relation to the impact of dysregulation of SUMO proteases and ligases in cancer initiation and progression.


Asunto(s)
Ligasas , Neoplasias , Animales , Endopeptidasas/metabolismo , Humanos , Ligasas/metabolismo , Péptido Hidrolasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo
8.
Semin Cell Dev Biol ; 132: 203-212, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34848148

RESUMEN

In the last decades, the post-translational modification system by covalent attachment of the SUMO polypeptide to proteins has emerged as an essential mechanism controlling virtually all the physiological processes in the eukaryotic cell. This includes vertebrate development. In the nervous system, SUMO plays crucial roles in synapse establishment and it has also been linked to a variety of neurodegenerative diseases. However, to date, the involvement of the modification of specific targets in key aspects of nervous system development, like patterning and differentiation, has remained largely elusive. A number of recent works confirm the participation of target-specific SUMO modification in critical aspects of nervous system development. Here, we review pioneering and new findings demonstrating the essential role SUMO plays in neurogenesis and other facets of neurodevelopment, which will help to precisely understand the variety of mechanisms SUMO utilizes to control most fundamental processes in the cell.


Asunto(s)
Neurogénesis , Procesamiento Proteico-Postraduccional , Sistema Nervioso
10.
Biomolecules ; 11(8)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34439792

RESUMEN

The recent pandemic we are experiencing caused by the coronavirus disease 2019 (COVID-19) has put the world's population on the rack, with more than 191 million cases and more than 4.1 million deaths confirmed to date. This disease is caused by a new type of coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A massive proteomic analysis has revealed that one of the structural proteins of the virus, the E protein, interacts with BRD2 and BRD4 proteins of the Bromodomain and Extra Terminal domain (BET) family of proteins. BETs are essential to cell cycle progression, inflammation and immune response and have also been strongly associated with infection by different types of viruses. The fundamental role BET proteins play in transcription makes them appropriate targets for the propagation strategies of some viruses. Recognition of histone acetylation by BET bromodomains is essential for transcription control. The development of drugs mimicking acetyl groups, and thereby able to displace BET proteins from chromatin, has boosted interest on BETs as attractive targets for therapeutic intervention. The success of these drugs against a variety of diseases in cellular and animal models has been recently enlarged with promising results from SARS-CoV-2 infection studies.


Asunto(s)
COVID-19/metabolismo , Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción/metabolismo , COVID-19/inmunología , COVID-19/virología , Proteínas de la Envoltura de Coronavirus/metabolismo , Humanos , Inmunidad Innata , Unión Proteica
11.
Front Mol Biosci ; 8: 709232, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386522

RESUMEN

Cornelia de Lange Syndrome (CdLS) is a human developmental syndrome with complex multisystem phenotypic features. It has been traditionally considered a cohesinopathy together with other phenotypically related diseases because of their association with mutations in subunits of the cohesin complex. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably and, although their precise molecular mechanisms are not well defined yet, the potential pathomechanisms underlying these diverse developmental defects have been theoretically linked to alterations of the cohesin complex function. The cohesin complex plays a critical role in sister chromatid cohesion, but this function is not affected in CdLS. In the last decades, a non-cohesion-related function of this complex on transcriptional regulation has been well established and CdLS pathoetiology has been recently associated to gene expression deregulation. Up to 70% of CdLS cases are linked to mutations in the cohesin-loading factor NIPBL, which has been shown to play a prominent function on chromatin architecture and transcriptional regulation. Therefore, it has been suggested that CdLS can be considered a transcriptomopathy. Actually, CdLS-like phenotypes have been associated to mutations in chromatin-associated proteins, as KMT2A, AFF4, EP300, TAF6, SETD5, SMARCB1, MAU2, ZMYND11, MED13L, PHIP, ARID1B, NAA10, BRD4 or ANKRD11, most of which have no known direct association with cohesin. In the case of BRD4, a critical highly investigated transcriptional coregulator, an interaction with NIPBL has been recently revealed, providing evidence on their cooperation in transcriptional regulation of developmentally important genes. This new finding reinforces the notion of an altered gene expression program during development as the major etiological basis for CdLS. In this review, we intend to integrate the recent available evidence on the molecular mechanisms underlying the clinical manifestations of CdLS, highlighting data that favors a transcription-centered framework, which support the idea that CdLS could be conceptualized as a transcriptomopathy.

12.
Chemistry ; 27(48): 12395-12409, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34213045

RESUMEN

Midkine (MK) is a neurotrophic factor that participates in the embryonic central nervous system (CNS) development and neural stem cell regulation, interacting with sulfated glycosaminoglycans (GAGs). Chondroitin sulfate (CS) is the natural ligand in the CNS. In this work, we describe the interactions between a library of synthetic models of CS-types and mimics. We did a structural study of this library by NMR and MD (Molecular Dynamics), concluding that the basic shape is controlled by similar geometry of the glycosidic linkages. Their 3D structures are a helix with four residues per turn, almost linear. We have studied the tetrasaccharide-midkine complexes by ligand observed NMR techniques and concluded that the shape of the ligands does not change upon binding. The ligand orientation into the complex is very variable. It is placed inside the central cavity of MK formed by the two structured beta-sheets domains linked by an intrinsically disordered region (IDR). Docking analysis confirmed the participation of aromatics residues from MK completed with electrostatic interactions. Finally, we test the biological activity by increasing the MK expression using CS tetrasaccharides and their capacity in enhancing the growth stimulation effect of MK in NIH3T3 cells.


Asunto(s)
Sulfatos de Condroitina , Oligosacáridos , Animales , Glicosaminoglicanos , Ratones , Midkina , Células 3T3 NIH
13.
Fundam Clin Pharmacol ; 35(6): 1109-1118, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33905573

RESUMEN

BACKGROUND: The chemokine CC motif ligand 1 (CCL1) participates in immune cell recruitment and, as other chemokines, is also involved in nociceptive processing. In contrast with previous reports indicating its participation in allodynia and cold hypernociception when spinally administered, its ability to evoke heat thermal analgesia, mediated by circulating leukocytes and endocannabinoids, after systemic administration has recently been reported. OBJECTIVES: Aiming to explore the role played by CCL1 on spinal nociception, we study here the effect of its intrathecal administration on thermal nociception in mice. METHODS: Behavioral nociceptive assays, immunohistochemical experiments, white cell blood depletion procedures and qRT-PCR experiments were performed. RESULTS: The intrathecal administration of CCL1 (0.3-30 ng) produced analgesia as measured by the unilateral hot plate test. This effect peaked 1 h after injection, was prevented by the CCR8 antagonist R243 and was accompanied by a reduction of c-Fos expression in spinal neurons. Whereas blood leukocyte depletion did not modify it, analgesia was abolished by the microglial inhibitor minocycline, but not the astroglial inhibitor aminoadipate. Furthermore, antinociception remained unmodified by the coadministration of cannabinoid type 1 or 2 receptors antagonists. However, it was reversed by naloxone but not by selective blockade of mu- or delta-opioid receptors. The inhibitory effect induced by the selective kappa-opioid receptor antagonist, nor-binaltorphimine, and by an anti-dynorphin A 1-17 antibody indicates that analgesia evoked by spinal CCL1 is mediated by endogenous dynorphins acting on kappa-opioid receptors. CONCLUSIONS: Endogenous dynorphin and microglia behave as key players in heat thermal analgesia evoked by spinal CCL1 in mice.


Asunto(s)
Analgesia , Receptores Opioides kappa , Animales , Quimiocina CCL1 , Ligandos , Ratones , Morfina , Antagonistas de Narcóticos/farmacología , Médula Espinal
14.
Cell Death Dis ; 12(4): 305, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753728

RESUMEN

Post-translational modification by covalent attachment of the Small ubiquitin-like modifier (Sumo) polypeptide regulates a multitude of processes in vertebrates. Despite demonstrated roles of Sumo in the development and function of the nervous system, the identification of key factors displaying a sumoylation-dependent activity during neurogenesis remains elusive. Through a SILAC (stable isotope labeling by/with amino acids in cell culture)-based proteomic approach, we have identified the Sumo proteome of the model cell line P19 under proliferation and neuronal differentiation conditions. More than 300 proteins were identified as putative Sumo targets differentially associated with one or the other condition. A group of proteins of interest were validated and investigated in functional studies. Among these, Utf1 was revealed as a new Sumo target. Gain-of-function experiments demonstrated marked differences between the effects on neurogenesis of overexpressing wild-type and sumoylation mutant versions of the selected proteins. While sumoylation of Prox1, Sall4a, Trim24, and Utf1 was associated with a positive effect on neurogenesis in P19 cells, sumoylation of Kctd15 was associated with a negative effect. Prox1, Sall4a, and Kctd15 were further analyzed in the vertebrate neural tube of living embryos, with similar results. Finally, a detailed analysis of Utf1 showed the sumoylation dependence of Utf1 function in controlling the expression of bivalent genes. Interestingly, this effect seems to rely on two mechanisms: sumoylation modulates binding of Utf1 to the chromatin and mediates recruitment of the messenger RNA-decapping enzyme Dcp1a through a conserved SIM (Sumo-interacting motif). Altogether, our results indicate that the combined sumoylation status of key proteins determines the proper progress of neurogenesis.


Asunto(s)
Neurogénesis/fisiología , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteoma/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Transactivadores/metabolismo , Diferenciación Celular/fisiología , Humanos , Sumoilación
15.
Biochem Pharmacol ; 175: 113903, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32156658

RESUMEN

As recently described, the administration of extremely low doses (pg/kg) of CCL4 (Macrophage inflammatory protein 1ß, MIP-1ß) can induce antinociceptive effects in mice (García-Domínguez et al., 2019b). We describe here that hydrodynamic delivery of a plasmid containing CCL4 cDNA provokes a biphasic response consisting in an initial thermal hyperalgesic reaction for 8 days followed by analgesia at days 10-12, being both responses blocked after the administration of the CCR5 antagonist DAPTA. Both the luminiscence evoked in liver after the administration of a plasmid containing CCL4 and luciferase cDNAs and the hepatic concentration of CCL4 measured by ELISA were maximal 4 days after plasmid administration and markedly diminished at day 10. A dose-effect curve including a wide dose range of exogenous CCL4 revealed thermal analgesia after the administration of 10-100 pg/kg whereas 1000 times higher doses (30-100 ng/kg) induced, instead, thermal hyperalgesia inhibited by DAPTA. This hyperalgesia was absent in mice with reduced white blood cells after cyclophosphamide treatment, thus supporting the involvement of circulating leukocytes. A multiarray bioluminescent assay revealed increased plasma levels of IL-1α, CCL2, CXCL1, CXCL13, IL-16 and TIMP-1 in mice treated with 100 ng/kg of CCL4. The hyperalgesic response evoked by CCL4 was prevented by IL-1R, CXCR2 or CCR2 antagonists or by the neutralization of CXCL13 or IL-16, but not TIMP-1, with selective antibodies. The administration of the anti-IL-16 antibody was the unique treatment able to convert hyperalgesia evoked by 100 ng/kg of CCL4 in an analgesic effect. The ability of IL-16 to evoke hypernociception was confirmed by studying the response to its exogenous administration (10-30 ng/kg). In summary, the present results demonstrate that CCL4 induces a dual modulation of nociception and describe some mechanisms involved in the hyperalgesic response evoked by this chemokine.


Asunto(s)
Quimiocina CCL4/administración & dosificación , Técnicas de Transferencia de Gen , Calor/efectos adversos , Hiperalgesia/tratamiento farmacológico , Nocicepción/fisiología , Animales , Quimiocina CCL4/genética , Relación Dosis-Respuesta a Droga , Hiperalgesia/genética , Masculino , Ratones , Nocicepción/efectos de los fármacos
16.
Cell Death Dis ; 10(8): 548, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320616

RESUMEN

Mutations in NIPBL are the major cause of Cornelia de Lange Syndrome (CdLS). NIPBL is the cohesin-loading factor and has recently been associated with the BET (bromodomains and extra-terminal (ET) domain) proteins BRD2 and BRD4. Related to this, a CdLS-like phenotype has been described associated to BRD4 mutations. Here, we show direct interaction of NIPBL with different BET members in yeast, and selective interaction with BRD4 in cells, being the ET domain involved in the interaction. To understand the relationship between NIPBL and BET proteins, we have performed RNA-Seq expression analysis following depletion of the different proteins. Results indicate that genes regulated by NIPBL largely overlap with those regulated by BRD4 but not with those regulated by BRD2. ChIP-Seq analysis indicates preferential NIPBL occupancy at promoters, and knockdown experiments show mutual stabilization of NIPBL and BRD4 on co-regulated promoters. Moreover, human fibroblasts from CdLS probands with mutations in NIPBL show reduced BRD4 at co-occupied promoters. Functional analysis in vivo, using mutants of Drosophila melanogaster, confirmed the genetic interaction between Nipped-B and fs(1)h, the orthologs of human NIPBL and BRD4, respectively. Thus, we provide evidence for NIPBL and BRD4 cooperation in transcriptional regulation, which should contribute to explain the recently observed CdLS-like phenotype associated with BRD4 mutations.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Síndrome de Cornelia de Lange/metabolismo , Drosophila melanogaster/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Secuenciación de Inmunoprecipitación de Cromatina , Síndrome de Cornelia de Lange/genética , Drosophila melanogaster/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Ontología de Genes , Células HEK293 , Humanos , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , RNA-Seq , Factores de Transcripción/genética
17.
Cell Mol Neurobiol ; 39(8): 1115-1124, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31203533

RESUMEN

Apart from its involvement in immune functions, the chemokine CCL1 can participate in the modulation of nociceptive processing. Previous studies have demonstrated the hypernociceptive effect produced by CCL1 in the spinal cord, but its possible action on peripheral nociception has not yet been characterized. We describe here that the subcutaneous administration of CCL1 (1-10 µg/kg) produces dose-dependent and long-lasting increases in thermal withdrawal latencies measured by the unilateral hot plate test in mice. The antinociceptive nature of this effect is further supported by the reduction of spinal neurons expressing Fos protein in response to a noxious thermal stimulus observed after the administration of 10 µg/kg of CCL1. CCL1-induced antinociception was inhibited after systemic, but not spinal administration of the selective antagonist R243 (0.1-1 mg/kg), demonstrating the participation of peripheral CCR8 receptors. The absence of this analgesic effect in mice treated with a dose of cyclophosphamide that produces a drastic depletion of leukocytes suggests its dependency on white blood cells. Furthermore, whereas the antinociceptive effect of CCL1 was unaffected after the treatment with either the antagonist of opioid receptors naloxone or the cannabinoid type 1 receptor blocker AM251, it was dose-dependently inhibited after the administration of the CB2 receptor antagonist SR144528 (0.1-1 mg/kg). The detection by ELISA of an increased presence of the endocannabinoid 2-arachidonoylglycerol after the administration of an analgesic dose of CCL1 supports the notion that CCL1 can evoke thermal analgesia through the release of this endocannabinoid from circulating leukocytes.


Asunto(s)
Analgesia , Quimiocina CCL1/administración & dosificación , Endocannabinoides/metabolismo , Temperatura , Analgésicos/farmacología , Animales , Ácidos Araquidónicos/metabolismo , Ciclofosfamida , Glicéridos/metabolismo , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Vértebras Lumbares/efectos de los fármacos , Vértebras Lumbares/metabolismo , Masculino , Ratones , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Receptores CCR8/metabolismo
18.
Mol Neurobiol ; 56(3): 1578-1595, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29907903

RESUMEN

In the present study, we characterize the antinociceptive effects produced by the chemokine CCL4 in mice. The intraplantar administration of very low doses of CCL4 (0.1-3 pg) produced bilateral antinociception assessed by the unilateral hot-plate test (UHP) without evoking chemotactic responses at the injection site. Moreover, the subcutaneous administration of CCL4 (3-100 pg/kg) also yielded bilateral antinociception in the UHP and the paw pressure test and reduced the number of spinal neurons that express Fos protein in response to noxious stimulation. The implication of peripheral CCR5 but not CCR1 in CCL4-evoked antinociception was deduced from the inhibition produced by systemic but not intrathecal, administration of the CCR5 antagonist DAPTA, and the inefficacy of the CCR1 antagonist J113863. Besides, the inhibition observed after subcutaneous but not intrathecal administration of naloxone demonstrated the involvement of peripheral opioids and the efficacy of naltrindole but not cyprodime or nor-binaltorphimine supported the participation of δ-opioid receptors. In accordance, plasma levels of met-enkephalin, but not ß-endorphin, were augmented in response to CCL4. Likewise, CCL4-evoked antinociception was blocked by the administration of an anti-met-enk antibody. Leukocyte depletion experiments performed with cyclophosphamide, anti-Ly6G, or anti-CD3 antibodies indicated that the antinociceptive effect evoked by CCL4 depends on circulating T lymphocytes. Double immunofluorescence experiments showed a four times more frequent expression of met-enk in CD4+ than in CD8+ T lymphocytes. CCL4-induced antinociception almost disappeared upon CD4+, but not CD8+, lymphocyte depletion with selective antibodies, thus supporting that the release of met-enk from CD4+ lymphocytes underlies the opioid antinociceptive response evoked by CCL4.


Asunto(s)
Analgésicos/uso terapéutico , Linfocitos T CD4-Positivos/efectos de los fármacos , Quimiocina CCL4/uso terapéutico , Encefalina Metionina/metabolismo , Nocicepción/efectos de los fármacos , Dolor/tratamiento farmacológico , Analgésicos/farmacología , Animales , Linfocitos T CD4-Positivos/metabolismo , Quimiocina CCL4/farmacología , Ratones , Naloxona/farmacología , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Dolor/metabolismo , Dimensión del Dolor
19.
J Mol Biol ; 430(8): 1084-1097, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29505757

RESUMEN

During development, cellular differentiation programs need tight regulation for proper display of the activity of multiple factors in time and space. Chromatin adaptors of the BET family (Brd2, Brd3, Brd4 and Brdt in vertebrates) are transcription co-regulators tightly associated with the progression of the cell cycle. A key question regarding their function is whether they work as part of the general transcription machinery or, on the contrary, they are precisely recruited to the chromatin through specific transcription factors. Here, we report the selective recruitment of Brd2 to the chromatin by the transcription factor Lyar. We show that Lyar downregulation results in Brd2 dissociation from a number of promoters studied. On the contrary, dissociation of BET proteins from the chromatin has no effect on Lyar occupancy. Under differentiation conditions, the absence of Lyar leads to impaired downregulation of the pluripotency gene Nanog, with concomitant reduction in the upregulation of differentiation markers. Interestingly, following the induction of differentiation, Brd2 depletion exhibits the same effects as expressing a truncated Lyar molecule lacking the Brd2 interacting domain. Both approaches result in stronger Nanog repression, indicating that Lyar-mediated recruitment of Brd2 moderates Nanog downregulation when differentiation is triggered. Moreover, expression of truncated Lyar leads to impaired differentiation and increased apoptosis. Thus, Lyar-mediated recruitment of Brd2 would participate in preserving a proper timing for Nanog silencing ensuring the appropriate establishment of the differentiation program.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Proteína Homeótica Nanog/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Apoptosis , Sitios de Unión , Diferenciación Celular , Línea Celular , Proliferación Celular , Proteínas de Unión al ADN/química , Células HEK293 , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/química
20.
Genes (Basel) ; 8(3)2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28282933

RESUMEN

Paired box 4 (PAX4) is a key factor in the generation of insulin producing ß-cells during embryonic development. In adult islets, PAX4 expression is sequestered to a subset of ß-cells that are prone to proliferation and more resistant to stress-induced apoptosis. The importance of this transcription factor for adequate pancreatic islets functionality has been manifested by the association of mutations in PAX4 with the development of diabetes, independently of its etiology. Overexpression of this factor in adult islets stimulates ß-cell proliferation and increases their resistance to apoptosis. Additionally, in an experimental model of autoimmune diabetes, a novel immunomodulatory function for this factor has been suggested. Altogether these data pinpoint at PAX4 as an important target for novel regenerative therapies for diabetes treatment, aiming at the preservation of the remaining ß-cells in parallel to the stimulation of their proliferation to replenish the ß-cell mass lost during the progression of the disease. However, the adequate development of such therapies requires the knowledge of the molecular mechanisms controlling the expression of PAX4 as well as the downstream effectors that could account for PAX4 action.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...