RESUMEN
Obesity is frequently accompanied by non-alcoholic fatty liver disease (NAFLD). These two diseases are associated with altered lipid metabolism, in which reverse cholesterol transport (LXRα/ABCA1/ABCG1) and leptin response (leptin receptor (Ob-Rb)/Sam68) are involved. The two pathways were evaluated in peripheral blood mononuclear cells (PBMCs) from 86 patients with morbid obesity (MO) before and six months after Roux-en-Y gastric bypass (RYGB) and 38 non-obese subjects. In the LXRα pathway, LXRα, ABCA1, and ABCG1 mRNA expressions were decreased in MO compared to non-obese subjects (p < 0.001, respectively). Ob-Rb was decreased (p < 0.001), whereas Sam68 was increased (p < 0.001) in MO. RYGB did not change mRNA gene expressions. In the MO group, the LXRα pathway (LXRα/ABCA1/ABCG1) negatively correlated with obesity-related variables (weight, body mass index, and hip), inflammation (C-reactive protein), and liver function (alanine-aminotransferase, alkaline phosphatase, and fatty liver index), and positively with serum albumin. In the Ob-R pathway, Ob-Rb and Sam68 negatively correlated with alanine-aminotransferase and positively with albumin. The alteration of LXRα and Ob-R pathways may play an important role in NAFLD development in MO. It is possible that MO patients may require more than 6 months following RYBGB to normalize gene expression related to reverse cholesterol transport or leptin responsiveness.
Asunto(s)
Transportador 1 de Casete de Unión a ATP , Colesterol , Leucocitos Mononucleares , Receptores X del Hígado , Hígado , Obesidad Mórbida , Receptores de Leptina , Humanos , Obesidad Mórbida/metabolismo , Obesidad Mórbida/cirugía , Obesidad Mórbida/genética , Masculino , Leucocitos Mononucleares/metabolismo , Femenino , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Adulto , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Persona de Mediana Edad , Hígado/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Transducción de Señal , Transporte Biológico , Regulación de la Expresión Génica , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genéticaRESUMEN
Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Adipoquinas , Encéfalo/metabolismo , Tejido Adiposo/fisiología , Barrera Hematoencefálica/metabolismoRESUMEN
Mitochondria are key cellular organelles whose main function is maintaining cell bioenergetics by producing ATP through oxidative phosphorylation. However, mitochondria are involved in a much higher number of cellular processes. Mitochondria are the home of key metabolic pathways like the tricarboxylic acid cycle and ß-oxidation of fatty acids, as well as biosynthetic pathways of key products like nucleotides and amino acids, the control of the redox balance of the cell and detoxifying the cell from H2S and NH3. This plethora of critical functions within the cell is the reason mitochondrial function is involved in several complex disorders (apart from pure mitochondrial disorders), among them inflammatory bowel diseases (IBD). IBD are a group of chronic, inflammatory disorders of the gut, mainly composed of ulcerative colitis and Crohn's disease. In this review, we present the current knowledge regarding the impact of mitochondrial dysfunction in the context of IBD. The role of mitochondria in both intestinal mucosa and immune cell populations are discussed, as well as the role of mitochondrial function in mechanisms like mucosal repair, the microbiota- and brain-gut axes and the development of colitis-associated colorectal cancer.
Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/metabolismo , Mucosa Intestinal/metabolismo , MitocondriasRESUMEN
Inflammatory Bowel Diseases (IBD) are a group of chronic, inflammatory disorders of the gut. The incidence and activity of IBD are determined by both genetic and environmental factors. Among these factors, polymorphisms in genes related to autophagy and the consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have been consistently associated with IBD. We show that NSAIDs induce mitochondrial stress and mitophagy in intestinal epithelial cells. In an altered mitophagy context simulating that observed in IBD patients, NSAID-induced mitochondrial stress leads to the release of mitochondrial components, which act as Danger Associated Molecular Patterns with pro-inflammatory potential. Furthermore, colonic organoids from Crohn's disease patients and healthy donors show activation of the mitochondrial Unfolded Protein Response (UPRmt) upon treatment with ibuprofen. Finally, colon biopsies from Crohn's disease patients in remission or with low-to-moderate activity also show expression of genes involved in UPRmt, while patients with severe activity show no increase compared to healthy donors. Our results suggest the involvement of mitochondria in the mechanisms triggering inflammation in IBD after NSAID use. Moreover, our results highlight the clinical relevance of mitochondrial stress and activation of the UPRmt pathway in the pathophysiology of Crohn's disease.
RESUMEN
The progression of obesity and type 2 diabetes (T2D) is intricately linked with adipose tissue (AT) angiogenesis. Despite an established network of microRNAs (miRNAs) regulating AT function, the specific role of angiogenic miRNAs remains less understood. The miR-221/222 cluster has recently emerged as being associated with antiangiogenic activity. However, no studies have explored its role in human AT amidst the concurrent development of obesity and T2D. Therefore, this study aims to investigate the association between the miR-221-3p/222-3p cluster in human AT and its regulatory network with obesity and T2D. MiR-221-3p/222-3p and their target gene (TG) expression levels were quantified through qPCR in visceral (VAT) and subcutaneous (SAT) AT from patients (n = 33) categorized based on BMI as normoweight (NW) and obese (OB) and by glycemic status as normoglycemic (NG) and type 2 diabetic (T2D) subjects. In silico analyses of miR-221-3p/222-3p and their TGs were conducted to identify pertinent signaling pathways. The results of a multivariate analysis, considering the simultaneous expression of miR-221-3p and miR-222-3p as dependent variables, revealed statistically significant distinctions when accounting for variables such as tissue depot, obesity, sex, and T2D as independent factors. Furthermore, both miRNAs and their TGs exhibited differential expression patterns based on obesity severity, glycemic status, sex, and type of AT depot. Our in silico analysis indicated that miR-221-3p/222-3p cluster TGs predominantly participate in angiogenesis, WNT signaling, and apoptosis pathways. In conclusion, these findings underscore a promising avenue for future research, emphasizing the miR-221-3p/222-3p cluster and its associated regulatory networks as potential targets for addressing obesity and related metabolic disorders.
Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Humanos , Diabetes Mellitus Tipo 2/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismoRESUMEN
(1) Background: There are conflicting results on whether weight loss after bariatric surgery (BS) might be associated with quality of life (QoL)/depressive symptomatology. We aim to determine whether BS outcomes are associated with QoL/depressive symptomatology in studied patients at the 8-year follow-up after BS, as well as their relationship with different serum proteins and miRNAs. (2) Methods: A total of 53 patients with class III obesity who underwent BS, and then classified into "good responders" and "non-responders" depending on the percentage of excess weight lost (%EWL) 8 years after BS (%EWL ≥ 50% and %EWL < 50%, respectively), were included. Basal serum miRNAs and different proteins were analysed, and patients completed tests to evaluate QoL/depressive symptomatology at 8 years after BS. (3) Results: The good responders group showed higher scores on SF-36 scales of physical functioning, role functioning-physical, role functioning-emotional, body pain and global general health compared with the non-responders. The expression of hsa-miR-101-3p, hsa-miR-15a-5p, hsa-miR-29c-3p, hsa-miR-144-3p and hsa-miR-19b-3p were lower in non-responders. Hsa-miR-19b-3p was the variable associated with the response to BS in a logistic regression model. (4) Conclusions: The mental health of patients after BS is limited by the success of the intervention. In addition, the expression of basal serum miRNAs related to depression/anxiety could predict the success of BS.
Asunto(s)
Cirugía Bariátrica , MicroARNs , Humanos , Calidad de Vida , Depresión , MicroARNs/metabolismo , ObesidadRESUMEN
BACKGROUND: Metabolic surgery is the most effective therapeutic strategy for the management of type 2 diabetes (T2DM). Several preoperative clinical factors have been associated with T2DM remission after metabolic surgery. However, other potential predictors remain unexplored. AIM: To assess the role of basal (pre-surgery) clinical and biochemical parameters in T2DM remission after metabolic surgery. METHODS: A prospective study including 98 patients with T2DM undergoing metabolic surgery was performed. Clinical, anthropometric, and biochemical data were collected at baseline and 1 year following metabolic surgery. RESULTS: Patients without T2DM remission 1 year after metabolic surgery presented a longer duration of diabetes and higher glycated hemoglobin (HbA1c) levels; a higher percentage of these subjects were using insulin therapy, antihypertensive drugs, and lipid-lowering therapies before metabolic surgery, compared to those patients with T2DM remission. A lower percentage of T2DM remission after metabolic surgery was observed among patients with hypertension/hypercholesterolemia before surgery, compared to those patients without hypertension/hypercholesterolemia (51.7 % vs 86.8 %, p < 0.001, and 38.5 % vs 75 %, p < 0.001, respectively), and among patients with longer duration of diabetes (≥5 years vs <5 years; 44.4 % vs 83 %, respectively; p < 0.001). In the logistic regression model, diabetes duration, basal HbA1c, and the presence of hypertension and hypercholesterolemia before surgery were inversely related to T2DM remission following metabolic surgery, after adjusting for sex, age, waist circumference, and type of surgery. CONCLUSIONS: In a cohort of patients with obesity and T2DM, preoperative hypertension and hypercholesterolemia, together with a longer diabetes duration and higher HbA1c concentrations, were independent predictors of T2DM persistence after metabolic surgery.
Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2 , Hipercolesterolemia , Hiperlipidemias , Hipertensión , Obesidad Mórbida , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/cirugía , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hemoglobina Glucada , Estudios Prospectivos , Glucemia/metabolismo , Hipertensión/complicaciones , Inducción de Remisión , Resultado del Tratamiento , Obesidad Mórbida/complicacionesRESUMEN
Clostridioides difficile infection (CDI) appears to be associated with different liver diseases. C. difficile secretes membrane vesicles (MVs), which may be involved in the development of nonalcoholic fatty liver disease (NALFD) and drug-induced liver injury (DILI). In this study, we investigated the presence of C. difficile-derived MVs in patients with and without CDI, and analyzed their effects on pathways related to NAFLD and DILI in HepG2 cells. Fecal extracellular vesicles from CDI patients showed an increase of Clostridioides MVs. C. difficile-derived MVs that were internalized by HepG2 cells. Toxigenic C. difficile-derived MVs decreased mitochondrial membrane potential and increased intracellular ROS compared to non-toxigenic C. difficile-derived MVs. In addition, toxigenic C. difficile-derived MVs upregulated the expression of genes related to mitochondrial fission (FIS1 and DRP1), antioxidant status (GPX1), apoptosis (CASP3), glycolysis (HK2, PDK1, LDHA and PKM2) and ß-oxidation (CPT1A), as well as anti- and pro-inflammatory genes (IL-6 and IL-10). However, non-toxigenic C. difficile-derived MVs did not produce changes in the expression of these genes, except for CPT1A, which was also increased. In conclusion, the metabolic and mitochondrial changes produced by MVs obtained from toxigenic C. difficile present in CDI feces are common pathophysiological features observed in the NAFLD spectrum and DILI.
RESUMEN
The composition and impact of fecal-microbe-derived extracellular vesicles (EVs) present in different diseases has not been analyzed. We determined the metagenomic profiling of feces and fecal-microbe-derived EVs from healthy subjects and patients with different diseases (diarrhea, morbid obesity and Crohn's disease (CD)) and the effect of these fecal EVs on the cellular permeability of Caco-2 cells. The control group presented higher proportions of Pseudomonas and Rikenellaceae_RC9_gut_group and lower proportions of Phascolarctobacterium, Veillonella and Veillonellaceae_ge in EVs when compared with the feces from which these EVs were isolated. In contrast, there were significant differences in 20 genera between the feces and EV compositions in the disease groups. Bacteroidales and Pseudomonas were increased, and Faecalibacterium, Ruminococcus, Clostridium and Subdoligranum were decreased in EVs from control patients compared with the other three groups of patients. Tyzzerella, Verrucomicrobiaceae, Candidatus_Paracaedibacter and Akkermansia were increased in EVs from the CD group compared with the morbid obesity and diarrhea groups. Fecal EVs from the morbid obesity, CD and, mainly, diarrhea induced a significant increase in the permeability of Caco-2 cells. In conclusion, the metagenomic composition of fecal-microbe-derived EVs changes depending on the disease of the patients. The modification of the permeability of Caco-2 cells produced by fecal EVs depends on the disease of the patients.
Asunto(s)
Enfermedad de Crohn , Vesículas Extracelulares , Obesidad Mórbida , Humanos , Células CACO-2 , Enfermedad de Crohn/microbiología , Heces/microbiología , DiarreaRESUMEN
The effect of oleic acid (OA) on the regulation of the circadian rhythm present in human visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with morbid obesity has not been analyzed yet. VAT and SAT explants from patients with morbid obesity were incubated with OA to analyze the circadian regulation of clock and other genes related to lipid metabolism (SREBP-1c, FAS, LPL and CPT1), and their association with baseline variables and the improvement of these patients after bariatric surgery. There were significant differences in amplitude and acrophase in VAT with respect to SAT. In VAT, body weight negatively correlated with BMAL1 and CRY1 amplitude, and REVERBα acrophase; body mass index (BMI) negatively correlated with REVERBα acrophase; and waist circumference negatively correlated with PER3 acrophase. In SAT, BMI negatively correlated with CLOCK amplitude, and CLOCK, REVERBα and CRY2 MESOR; and waist circumference negatively correlated with PER3 amplitude and acrophase. A greater short-term improvement of body weight, BMI and waist circumference in patients with morbid obesity after bariatric surgery was associated with a lower CRY1 and CRY2 amplitude and an earlier PER1 and PER3 acrophase in SAT. OA produced a more relevant circadian rhythm and increased the amplitude of most clock genes and lipid metabolism-related genes. OA regulated the acrophase of most clock genes in VAT and SAT, placing CLOCK/BMAL1 in antiphase with regard to the other genes. OA increased the circadian rhythmicity, although with slight differences between adipose tissues. These differences could determine its different behavior in obesity.
Asunto(s)
Ritmo Circadiano , Grasa Intraabdominal , Obesidad Mórbida , Ácido Oléico , Grasa Subcutánea , Humanos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Ritmo Circadiano/efectos de los fármacos , Obesidad Mórbida/fisiopatología , Ácido Oléico/farmacología , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/fisiología , Grasa Intraabdominal/efectos de los fármacos , Grasa Intraabdominal/fisiologíaRESUMEN
BACKGROUND: Recent reports have suggested that air pollution may impact thyroid function, although the evidence is still scarce and inconclusive. In this study we evaluated the association of exposure to air pollutants to thyroid function parameters in a nationwide sample representative of the adult population of Spain. METHODS: The Di@bet.es study is a national, cross-sectional, population-based survey which was conducted in 2008-2010 using a random cluster sampling of the Spanish population. The present analyses included 3859 individuals, without a previous thyroid disease diagnosis, and with negative thyroid peroxidase antibodies (TPO Abs) and thyroid-stimulating hormone (TSH) levels of 0.1-20 mIU/L. Participants were assigned air pollution concentrations for particulate matter <2.5µm (PM2.5) and Nitrogen Dioxide (NO2), corresponding to the health examination year, obtained by means of modeling combined with measurements taken at air quality stations (CHIMERE chemistry-transport model). TSH, free thyroxine (FT4), free triiodothyronine (FT3) and TPO Abs concentrations were analyzed using an electrochemiluminescence immunoassay (Modular Analytics E170 Roche). RESULTS: In multivariate linear regression models, there was a highly significant negative correlation between PM2.5 concentrations and both FT4 (p<0.001), and FT3 levels (p<0.001). In multivariate logistic regression, there was a significant association between PM2.5 concentrations and the odds of presenting high TSH [OR 1.24 (1.01-1.52) p=0.043], lower FT4 [OR 1.25 (1.02-1.54) p=0.032] and low FT3 levels [1.48 (1.19-1.84) p=<0.001] per each IQR increase in PM2.5 (4.86 µg/m3). There was no association between NO2 concentrations and thyroid hormone levels. No significant heterogeneity was seen in the results between groups of men, pre-menopausal and post-menopausal women. CONCLUSIONS: Exposures to PM2.5 in the general population were associated with mild alterations in thyroid function.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Estudios Transversales , Femenino , Humanos , Masculino , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , Glándula Tiroides/química , Hormonas Tiroideas , TirotropinaRESUMEN
Zinc-α2 glycoprotein (ZAG) is an adipokine involved in adipocyte metabolism with potential implications in the pathogenesis of metabolic disorders. Our aim was to evaluate the relationship between visceral (VAT) and subcutaneous adipose tissue (SAT) ZAG expression and metabolic parameters in patients with class III obesity, along with the impact of basal ZAG expression on short- and medium-term outcomes related to bariatric surgery. 41 patients with class III obesity who underwent bariatric surgery were included in this study. ZAG gene expression was quantified in SAT and VAT. Patients were classified into two groups according to SAT and VAT ZAG percentile. Anthropometric and biochemical variables were obtained before and 15 days, 45 days, and 1 year after surgery. The lower basal SAT ZAG expression percentile was associated with higher weight and waist circumference, while the lower basal VAT ZAG expression percentile was associated with higher weight, waist circumference, insulin, insulin resistance, and the presence of metabolic syndrome. Basal SAT ZAG expression was inversely related to weight loss at 45 days after surgery, whereas no associations were found between basal VAT ZAG expression and weight loss after surgery. Additionally, a negative association was observed between basal SAT and VAT ZAG expression and the decrease of gamma-glutamyl transferase after bariatric surgery. Therefore, lower SAT and VAT ZAG expression levels were associated with an adverse metabolic profile. However, this fact did not seem to confer worse bariatric surgery-related outcomes. Further research is needed to assess the clinical significance of the role of ZAG expression levels in the dynamics of hepatic enzymes after bariatric surgery.
RESUMEN
The gut microbiota could play a significant role in the progression of nonalcoholic fatty liver disease (NAFLD); however, its relevance in drug-induced liver injury (DILI) remains unexplored. Since the two hepatic disorders may share damage pathways, we analysed the metagenomic profile of the gut microbiota in NAFLD, with or without significant liver fibrosis, and in DILI, and we identified the main associated bacterial metabolic pathways. In the NAFLD group, we found a decrease in Alistipes, Barnesiella, Eisenbergiella, Flavonifractor, Fusicatenibacter, Gemminger, Intestinimonas, Oscillibacter, Parasutterella, Saccharoferementans and Subdoligranulum abundances compared with those in both the DILI and control groups. Additionally, we detected an increase in Enterobacter, Klebsiella, Sarcina and Turicibacter abundances in NAFLD, with significant liver fibrosis, compared with those in NAFLD with no/mild liver fibrosis. The DILI group exhibited a lower microbial bacterial richness than the control group, and lower abundances of Acetobacteroides, Blautia, Caloramator, Coprococcus, Flavobacterium, Lachnospira, Natronincola, Oscillospira, Pseudobutyrivibrio, Shuttleworthia, Themicanus and Turicibacter compared with those in the NAFLD and control groups. We found seven bacterial metabolic pathways that were impaired only in DILI, most of which were associated with metabolic biosynthesis. In the NAFLD group, most of the differences in the bacterial metabolic pathways found in relation to those in the DILI and control groups were related to fatty acid and lipid biosynthesis. In conclusion, we identified a distinct bacterial profile with specific bacterial metabolic pathways for each type of liver disorder studied. These differences can provide further insight into the physiopathology and development of NAFLD and DILI.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Bacterias , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Humanos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Metagenoma , Enfermedad del Hígado Graso no Alcohólico/metabolismoRESUMEN
BACKGROUND: Little is known about the relation between morbid obesity and duodenal transcriptomic changes. We aimed to identify intestinal genes that may be associated with the development of obesity regardless of the degree of insulin resistance (IR) of patients. MATERIAL AND METHODS: Duodenal samples were assessed by microarray in three groups of women: non-obese women and women with morbid obesity with low and high IR. RESULTS: We identified differentially expressed genes (DEGs) associated with morbid obesity, regardless of IR degree, related to digestion and lipid metabolism, defense response and inflammatory processes, maintenance of the gastrointestinal epithelium, wound healing and homeostasis, and the development of gastrointestinal cancer. However, other DEGs depended on the IR degree. We mainly found an upregulation of genes involved in the response to external organisms, hypoxia, and wound healing functions in women with morbid obesity and low IR. CONCLUSIONS: Regardless of the degree of IR, morbid obesity is associated with an altered expression of genes related to intestinal defenses, antimicrobial and immune responses, and gastrointestinal cancer. Our data also suggest a deficient duodenal immune and antimicrobial response in women with high IR.
RESUMEN
Background: Little is known about the effect of extra virgin olive (EVOO) and sunflower oil (SO) on the composition of extracellular vesicles (EVs) secreted by endothelial cells and the effects of these EVs on smooth muscle cells (SMCs). These cells play an important role in the development of atherosclerosis. Methods: We evaluated the effects of endothelial cells-derived EVs incubated with triglyceride-rich lipoproteins obtained after a high-fat meal with EVOO (EVOO-EVs) and SO (SO-EVs), on the transcriptomic profile of SMCs. Results: We found 41 upregulated and 19 downregulated differentially expressed (DE)-miRNAs in EVOO-EVs. Afterwards, SMCs were incubated with EVOO-EVs and SO-EVs. SMCs incubated with SO-EVs showed a greater number of DE-mRNA involved in pathways related to cancer, focal adhesion, regulation of actin cytoskeleton, and MAPK, toll-like receptor, chemokine and Wnt signaling pathways than in SMCs incubated with EVOO-EVs. These DE-mRNAs were involved in biological processes related to the response to endogenous stimulus, cell motility, regulation of intracellular signal transduction and cell population proliferation. Conclusion: EVOO and SO can differently modify the miRNA composition of HUVEC-derived EVs. These EVs can regulate the SMCs transcriptomic profile, with SO-EVs promoting a profile more closely linked to the development of atherosclerosis than EVOO-EVs.
RESUMEN
Background: Intragastric injection of botulinum toxin A (BT-A) has been shown to be effective for weight loss up to six months after administration, according to previous studies. Our objective was to determine, in patients on bariatric surgery waiting lists, the effect of BT-A on weight loss in the pre- and postoperative period and to analyse if there are different responses based on Body Mass Index (BMI). Methods: We performed a follow-up analysis of the IntraTox study, which included 46 patients on bariatric surgery waiting lists in a single-centre, randomised, double-blind, placebo-controlled clinical trial. The treatment group received intragastric BT-A, whereas the control group received physiological saline solution. The one-time procedure was performed at the time of diagnostic endoscopy 7−8 months before surgery. Weight loss was evaluated at admission and after 4 and 12 weeks from the bariatric surgery. Our analysis was stratified by BMI at randomisation. Results: weight loss percentage on the day of surgery, with respect to the initial visit, was −4.5 ± 3.9% for the control group vs. −7.6 ± 4.2%, for the treatment group (p = 0.013). Weight loss percentage tended to remain greater in the treatment group one month after the intervention (−12.7 ± 4.7% vs. −15.2 ± 4.6%, p = 0.07) and become similar three months after (−21.6 ± 4.7% vs. −21.6 ± 4.6%). After stratifying by BMI, only patients with BMI over 50 kg/m2 allocated to the treatment group obtained a greater weight loss at the end of the trial, the day of surgery, and one month after, compared with the placebo group (−4.9 ± 4.9%, −10.8 ± 5.3% and −17.1 ± 3.8% vs. −0.1 ± 2.6%, −4.3 ± 3.2% and −12.8 ± 4.1%, respectively (p < 0.05). Conclusions: intragastric injection of BT-A is effective to achieve significant weight loss, especially in extreme obesity. Its use before bariatric surgery enhances perioperative weight loss.
RESUMEN
BACKGROUND: Bariatric surgery induces changes in gut microbiota that have been suggested to contribute to weight loss and metabolic improvement. However, whether preoperative gut microbiota composition could predict response to bariatric surgery has not yet been elucidated. STUDY DESIGN: Seventy-six patients who underwent sleeve gastrectomy were classified according to the percentage of excess weight loss (%EWL) 1 year after surgery in the responder group: >50%EWL (n=50) and the nonresponder group: <50%EWL (n=26). Patients were evaluated before surgery, and 3 months and 1 year after surgery. Gut microbiota composition was analyzed before surgery (n=76) and 3 months after bariatric surgery (n=40). RESULTS: Diversity analysis did not show differences between groups before surgery or 3 months after surgery. Before surgery, there were differences in the abundance of members belonging to Bacteroidetes and Firmicutes phyla (nonresponder group: enriched in Bacteroidaceae, Bacteroides, Bacteroides uniformis, Alistipes finegoldii, Alistipes alistipes, Dorea formicigenerans, and Ruminococcus gnavus. Responder group: enriched in Peptostreptococcaceae, Gemmiger, Gemiger formicilis, Barnesiella, Prevotellaceae, and Prevotella; linear discriminant analysis >2; p < 0.05). Prevotella-to-Bacteroides ratio was significantly lower in the nonresponder group compared to the responder group (p = 0.048). After surgery, the responder group showed an enrichment in taxa that have been shown to have beneficial effects on host metabolism. Before surgery, PICRUSt analysis showed an enrichment in pathways involved in the biosynthesis components of the O-antigen polysaccharideunits in lipopolysaccharides in the nonresponder group. CONCLUSIONS: Preoperative gut microbiota could have an impact on bariatric surgery outcomes. Prevotella-to-Bacteroides ratio could be used as a predictive tool for weight loss trajectory. Early after surgery, patients who experienced successful weight loss showed an enrichment in taxa related to beneficial effects on host metabolism.
Asunto(s)
Cirugía Bariátrica , Microbioma Gastrointestinal , Obesidad Mórbida , Clostridiales , Gastrectomía , Humanos , Obesidad Mórbida/cirugía , Pérdida de PesoRESUMEN
(1) Background: Little is known about the effects of SARS-CoV-2 on the placenta, and whether the maternal inflammatory response is transmitted vertically. This research aims to provide information about the effects of SARS-CoV-2 infection on maternal and fetal immunity. (2) Methods: We have studied placental changes and humoral and cellular immunity in maternal and umbilical cord blood (UCB) samples from a group of pregnant women delivering after the diagnosis of SARS-CoV-2 infection during pregnancy. IgG and IgM SARS-CoV-2 antibodies, Interleukin 1b (IL1b), Interleukin 6 (IL6), and gamma-Interferon (IFN-γ), have been studied in the UCB samples. Lymphocyte subsets were studied according to CD3, CD8, CD4, CD34, and invariant natural Killer T cells (iNKT) markers. We used in situ hybridization techniques for the detection of viral RNA in placentas. (3) Results: During the study period, 79 pregnant women and their corresponding newborns were recruited. The main gestational age at the time of delivery was 39.1 weeks (SD 1.3). We did not find traces of the SARS-CoV-2 virus RNA in any of the analyzed placental samples. Detectable concentrations of IgG anti-SARS-CoV-2 antibodies, IL1b, IL6, and IFN-γ, in UCB were found in all cases, but IgM antibodies anti-ARS-CoV-2 were systematically undetectable. We found significant correlations between fetal CD3+ mononuclear cells and UCB IgG concentrations. We also found significant correlations between UCB IgG concentrations and fetal CD3+/CD4+, as well as CD3+/CD8+ T cells subsets. We also discovered that fetal CD3+/CD8+ cell counts were significantly higher in those cases with placental infarctions. (4) Conclusion: we have not verified the placental transfer of SARS-CoV-2. However, we have discovered that a significant immune response is being transmitted to the fetus in cases of SARS-CoV-2 maternal infection.
RESUMEN
Little is known about the influence of gastric microbiota on host metabolism, even though the stomach plays an important role in the production of hormones involved in body weight regulation and glucose homeostasis. Proton pump inhibitors (PPIs) and Helicobacter pylori alter gut microbiota, but their impact on gastric microbiota in patients with obesity and the influence of these factors on the metabolic response to bariatric surgery is not fully understood. Forty-one subjects with morbid obesity who underwent sleeve gastrectomy were included in this study. The H. pylori group was established by the detection of H. pylori using a sequencing-based method (n = 16). Individuals in whom H. pylori was not detected were classified according to PPI treatment. Gastric biopsy specimens were obtained during surgery and were analyzed by a high-throughput-sequencing method. Patients were evaluated at baseline and 3, 6, and 12 months after surgery. ß-Diversity measures were able to cluster patients according to their gastric mucosa-associated microbiota composition. H. pylori and PPI treatment are presented as two important factors for gastric mucosa-associated microbiota. H. pylori reduced diversity, while PPIs altered ß-diversity. Both factors induced changes in the gastric mucosa-associated microbiota composition and its predicted functions. PPI users showed lower percentages of change in the body mass index (BMI) in the short term after surgery, while the H. pylori group showed higher glucose levels and lower percentages of reduction in body weight/BMI 1 year after surgery. PPIs and H. pylori colonization could modify the gastric mucosa-associated microbiota, altering its diversity, composition, and predicted functionality. These factors may have a role in the metabolic evolution of patients undergoing bariatric surgery. IMPORTANCE The gut microbiota has been shown to have an impact on host metabolism. In the stomach, factors like proton pump inhibitor treatment and Helicobacter pylori haven been suggested to alter gut microbiota; however, the influence of these factors on the metabolic response to bariatric surgery has not been fully studied. In this study, we highlight the impact of these factors on the gastric microbiota composition. Moreover, proton pump inhibitor treatment and the presence of Helicobacter pylori could have an influence on bariatric surgery outcomes, mainly on body weight loss and glucose homeostasis. Deciphering the relationship between gastric hormones and gastric microbiota and their contributions to bariatric surgery outcomes paves the way to develop gut manipulation strategies to improve the metabolic success of bariatric surgery.
Asunto(s)
Microbioma Gastrointestinal , Obesidad Mórbida/metabolismo , Obesidad Mórbida/cirugía , Estómago/microbiología , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Cirugía Bariátrica , Femenino , Helicobacter pylori/clasificación , Helicobacter pylori/genética , Helicobacter pylori/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Obesidad Mórbida/microbiología , Estómago/metabolismo , Estómago/cirugíaRESUMEN
BACKGROUND: Little is known about the effects of hypoxia on scavenger receptors (SRs) levels in adipocytes. We analyzed the effect of morbid obesity and hypoxia on SRs and inflammation markers in human visceral adipocytes and whether ox-LDL modify the inflammatory profile produced by hypoxia. METHODS: We studied in 17 non-obese and 20 subjects with morbid obesity (MO) the mRNA expression of HIF-1α, SRs (LOX-1, MSR1, CL-P1 and CXCL16), IL6 and TNFα in visceral adipocytes and the effect of hypoxia with or without ox-LDL on visceral in vitro-differentiated adipocytes (VDA). RESULTS: HIF-1α, TNFα, IL6, LOX-1, MSR1 and CXCL16 expression in adipocytes was increased in MO when compared with those in non-obese subjects (p < 0.05). The expression of most of the inflammatory markers and SRs gene correlated with HIF-1α. In VDA, hypoxia increased TNFα, IL6, MSR1, CXCL16 and CL-P1 (p < 0.05) in non-obese subjects, and TNFα, IL6, MSR1 and CXCL16 (p < 0.05) in MO. Silencing HIF-1α prevented the increase of TNFα, IL6, LOX-1, MSR1, CL-P1 and CXCL16 expression (p < 0.05). The combination of hypoxia and ox-LDL produced higher TNFα expression (p = 0.041). CONCLUSIONS: Morbid obesity and hypoxia increased SRs and inflammatory markers in visceral adipocytes. In a hypoxic state, ox-LDL increased the proinflammatory response of visceral adipocytes to hypoxia.