Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(8): 5169-5180, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39083627

RESUMEN

Addressing current challenges in solid tumor research requires advanced in vitro three-dimensional (3D) cellular models that replicate the inherently 3D architecture and microenvironment of tumor tissue, including the extracellular matrix (ECM). However, tumor cells exert mechanical forces that can disrupt the physical integrity of the matrix in long-term 3D culture. Therefore, it is necessary to find the optimal balance between cellular forces and the preservation of matrix integrity. This work proposes using polydopamine (PDA) coating for 3D microfluidic cultures of pancreatic cancer cells to overcome matrix adhesion challenges to sustain representative tumor 3D cultures. Using PDA's distinctive adhesion and biocompatibility, our model uses type I collagen hydrogels seeded with different pancreatic cancer cell lines, prompting distinct levels of matrix deformation and contraction. Optimizing the PDA coating enhances the adhesion and stability of collagen hydrogels within microfluidic devices, achieving a balance between the disruptive forces of tumor cells on matrix integrity and the maintenance of long-term 3D cultures. The findings reveal how this tension appears to be a critical determinant in spheroid morphology and growth dynamics. Stable and prolonged 3D culture platforms are crucial for understanding solid tumor cell behavior, dynamics, and responses within a controlled microenvironment. This advancement ultimately offers a powerful tool for drug screening, personalized medicine, and wider cancer therapeutics strategies.


Asunto(s)
Carcinoma Ductal Pancreático , Hidrogeles , Indoles , Dispositivos Laboratorio en un Chip , Neoplasias Pancreáticas , Polímeros , Humanos , Indoles/química , Indoles/farmacología , Polímeros/química , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Hidrogeles/química , Hidrogeles/farmacología , Línea Celular Tumoral , Técnicas de Cultivo Tridimensional de Células/métodos , Matriz Extracelular/química , Microambiente Tumoral/efectos de los fármacos
2.
Macromol Biosci ; 24(8): e2400073, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38806184

RESUMEN

The objective for this study is to advance the development of a specialized biomaterial that can effectively facilitate the regeneration of adipose tissue. In prior studies, the assessment of collagen (Col), elastin (Ela), and fibrin (Fib) unary scaffolds has been conducted. However, it is important to note that native adipose tissue is comprised of a diverse array of extracellular matrix (ECM) constituents. To mimic this behavior, binary compositions of collagen, elastin, and fibrin are fabricated in a 1:1 ratio, resulting in the formation of Col/Ela, Col/Fib, and Ela/Fib composites through a customized fabrication procedure. The physical properties of these scaffolds are comprehensively analyzed using a range of material characterization techniques. Additionally, the biological properties of the scaffolds are investigated by examining the survival, proliferation, and phenotype of adipose-derived stem cells. Subsequently, the aforementioned binary scaffolds are implanted into a rodent model for 28 days. the explants are analysed through X-ray microtomography, histology, and immunohistochemistry. The findings of the study demonstrate that the utilization of binary combinations of Col/Ela, Col/Fib, and Ela/Fib has a discernible impact on the physical and biological characteristics of the scaffolds. Nevertheless, Ela/Fib exhibits characteristics that make it a suitable candidate for adipogenesis due to its notable upregulation of caveolin-1 expression in both acellular and cellular cohorts. The combination of two natural polymers in this cell-material interaction has significantly enhanced the comprehension of adipogenesis.


Asunto(s)
Tejido Adiposo , Colágeno , Elastina , Fibrina , Andamios del Tejido , Elastina/química , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Fibrina/química , Animales , Colágeno/química , Andamios del Tejido/química , Regeneración/efectos de los fármacos , Porosidad , Ratas , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Células Madre/citología , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Humanos
3.
Eur J Cell Biol ; 103(2): 151396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38359522

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy that accounts for more than 90% of pancreatic cancer diagnoses. Our research is focused on the physico-chemical properties of the tumour microenvironment (TME), including its tumoural extracellular matrix (tECM), as they may have an important impact on the success of cancer therapies. PDAC xenografts and their decellularized tECM offer a great material source for research in terms of biomimicry with the original human tumour. Our aim was to evaluate and quantify the physico-chemical properties of the PDAC TME. Both cellularized (native TME) and decellularized (tECM) patient-derived PDAC xenografts were analyzed. A factorial design of experiments identified an optimal combination of factors for effective xenograft decellularization. Our results provide a complete advance in our understanding of the PDAC TME and its corresponding stroma, showing that it presents an interconnected porous architecture with very low permeability and small pores due to the contractility of the cellular components. This fact provides a potential therapeutic strategy based on the therapeutic agent size.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Microambiente Tumoral , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Animales , Ratones , Matriz Extracelular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...