Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Transl Oncol ; 40: 101878, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183801

RESUMEN

BACKGROUND: The EGFR pathway is involved in intrinsic and acquired resistance to a wide variety of targeted therapies in cancer. Vaccination represents an alternative to the administration of anti-EGFR monoclonal antibodies, such as cetuximab or panitumumab. Here, we tested if anti-EGF antibodies generated by vaccination (anti-EGF VacAbs) could potentiate the activity of drugs targeting the ERK/MAPK and PI3K/Akt pathways. METHODS: Non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and melanoma cell lines harboring KRAS, NRAS, BRAF and PIK3CA mutations were used. Anti-EGF VacAbs were obtained by immunizing rabbits with a fusion protein containing a synthetic, highly mutated variant of human EGF. Cell viability was determined by MTT, total and phosphorylated proteins by Western blotting, cell cycle distribution and cell death by flow cytometry and emergence of resistance by microscopic examination in low density cultures. RESULTS: Anti-EGF VacAbs potentiated the antiproliferative effects of MEK, KRAS G12C, BRAF, PI3K and Akt inhibitors in KRAS, NRAS, BRAF and PIK3CA mutant cells and delayed the appearance of resistant clones in vitro. The effects of anti-EGF VacAbs were comparable or superior to those of panitumumab and cetuximab. The combination of anti-EGF VacAbs with the targeted inhibitors effectively suppressed EGFR downstream pathways and sera from patients immunized with an anti-EGF vaccine also blocked activation of EGFR effectors. CONCLUSIONS: Anti-EGF VacAbs enhance the antiproliferative effects of drugs targeting the ERK/MAPK and PIK3CA/Akt pathways. Our data provide a rationale for clinical trials testing anti-EGF vaccination combined with inhibitors selected according to the patient's genetic profile.

2.
iScience ; 26(7): 107006, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534190

RESUMEN

This study evaluates the efficacy of combining targeted therapies with MET or SHP2 inhibitors to overcome MET-mediated resistance in different NSCLC subtypes. A prevalence study was conducted for MET amplification and overexpression in samples from patients with NSCLC who relapsed on ALK, ROS1, or RET tyrosine kinase inhibitors. MET-mediated resistance was detected in 37.5% of tissue biopsies, which allow the detection of MET overexpression, compared to 7.4% of liquid biopsies. The development of drug resistance by MET overexpression was confirmed in EGFRex19del-, KRASG12C-, HER2ex20ins-, and TPM3-NTRK1-mutant cell lines. The combination of targeted therapy with MET or SHP2 inhibitors was found to overcome MET-mediated resistance in both in vitro and in vivo assays. This study highlights the importance of considering MET overexpression as a resistance driver to NSCLC targeted therapies to better identify patients who could potentially benefit from combination approaches with MET or SHP2 inhibitors.

3.
Transl Oncol ; 14(1): 100887, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33129112

RESUMEN

Advanced NSCLC patients harboring EML4-ALK and CCDC6-RET rearrangements derive benefit from treatment with ALK and RET TKIs but not immune checkpoint inhibitors. New immunotherapeutic approaches, such as immunization against growth factors, can be of particular interest for combination treatment in these patients. Here, we investigated the effects of anti-EGF antibodies generated by vaccination (anti-EGF VacAbs), TKIs and combinations in EML4-ALK and CCDC6-RET NSCLC cell lines. We found that EGF and tumor growth factor alpha (TGFα) significantly decreased the antiproliferative activity of the RET inhibitor BLU-667 in CCDC6-RET cells and brigatinib, alectinib and crizotinib in EML4-ALK translocated cells. The addition of anti-EGF VacAbs reversed the effects of EGF and TGFα, potentiated the antitumor effects of the kinase inhibitors and delayed the appearance in vitro of resistant clones. Western blotting demonstrated that the combination of anti-EGF VacAbs with ALK or RET TKIs effectively suppressed EGFR downstream pathways in EML4-ALK translocated and CCDC6-RET cells, respectively. In conclusion, anti-EGF VacAbs significantly increased the antitumor activity of TKIs in ALK and RET-positive cell lines. Clinical trials of an EGF vaccine in combination with ALK and RET TKIs are warranted.

4.
Nat Commun ; 10(1): 1812, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000705

RESUMEN

Non-small cell lung cancer (NSCLC) tumors harboring mutations in EGFR ultimately relapse to therapy with EGFR tyrosine kinase inhibitors (EGFR TKIs). Here, we show that resistant cells without the p.T790M or other acquired mutations are sensitive to the Aurora B (AURKB) inhibitors barasertib and S49076. Phospho-histone H3 (pH3), a major product of AURKB, is increased in most resistant cells and treatment with AURKB inhibitors reduces the levels of pH3, triggering G1/S arrest and polyploidy. Senescence is subsequently induced in cells with acquired mutations while, in their absence, polyploidy is followed by cell death. Finally, in NSCLC patients, pH3 levels are increased after progression on EGFR TKIs and high pH3 baseline correlates with shorter survival. Our results reveal that AURKB activation is associated with acquired resistance to EGFR TKIs, and that AURKB constitutes a potential target in NSCLC progressing to anti-EGFR therapy and not carrying resistance mutations.


Asunto(s)
Antineoplásicos/farmacología , Aurora Quinasa B/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos/uso terapéutico , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Ratones , Persona de Mediana Edad , Organofosfatos/farmacología , Organofosfatos/uso terapéutico , Fosforilación/efectos de los fármacos , Poliploidía , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , ARN Interferente Pequeño/metabolismo , Análisis de Supervivencia , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Transl Cancer Res ; 8(Suppl 1): S3-S15, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35117060

RESUMEN

BACKGROUND: In a significant percentage of advanced non-small cell lung cancer (NSCLC) patients, tumor tissue is unavailable or insufficient for genetic analyses at time to progression. We prospectively analyzed the appearance of genetic alterations associated with resistance in liquid biopsies of advanced NSCLC patients progressing to targeted therapies using the NGS platform. METHODS: A total of 24 NSCLC patients were included in the study, 22 progressing to tyrosine kinase inhibitors and two to other treatments. Liquid biopsies samples were obtained and analyzed using the GeneReadTM QIAact Lung DNA UMI Panel, designed to enrich specific target regions and containing 550 variant positions in 19 selected genes frequently altered in lung cancer tumors. Previously, a retrospective validation of the panel was performed in clinical samples. RESULTS: Of the 21 patients progressing to tyrosine kinase inhibitors with valid results in liquid biopsy, NGS analysis identified a potential mechanism of resistance in 12 (57%). The most common were acquired mutations in ALK and EGFR, which appeared in 8/21 patients (38%), followed by amplifications in 5/21 patients (24%), and KRAS mutations in one patient (5%). Loss of the p.T790M was also identified in two patients progressing to osimertinib. Three of the 21 (14%) patients presented two or more concomitant alterations associated with resistance. Finally, an EGFR amplification was found in the only patient progressing to immunotherapy included in the study. CONCLUSIONS: NGS analysis in liquid biopsies of patients progressing to targeted therapies using the GeneReader platform is feasible and can help the oncologist to make treatment decisions.

6.
J Thorac Oncol ; 13(9): 1324-1337, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29751136

RESUMEN

INTRODUCTION: Mutations in EGFR correlate with impaired response to immune checkpoint inhibitors and the development of novel immunotherapeutic approaches for EGFR mutant NSCLC is of particular interest. Immunization against epidermal growth factor (EGF) has shown efficacy in a phase III trial including unselected NSCLC patients, but little was known about the mechanisms involved in the effects of the anti-EGF antibodies generated by vaccination (anti-EGF VacAbs) or their activity in tumor cells with EGFR mutations. METHODS: The EGFR-mutant, NSCLC cell lines H1975, and PC9, together with several gefitinib and osimertinib-resistant cells derived from PC9, were treated with anti-EGF VacAbs and/or EGFR tyrosine kinase inhibitors (TKIs). Cell viability was analyzed by proliferation assays, cell cycle by fluorescence-activated cell sorting analysis, and levels of RNA and proteins by quantitative retro-transcription polymerase chain reaction and Western blotting. RESULTS: Anti-EGF VacAbs generated in rabbits suppressed EGF-induced cell proliferation and cycle progression and inhibited downstream EGFR signaling in EGFR-mutant cells. Sera from patients immunized with an EGF vaccine were also able to block activation of EGFR effectors. In combination, the anti-EGF VacAbs significantly enhanced the antitumor activity of all TKIs tested, suppressed Erk1/2 phosphorylation, blocked the activation of signal transducer and activator of transcription 3 (STAT3) and downregulated the expression of AXL receptor tyrosine kinase (AXL). Finally, anti-EGF VacAbs significantly delayed the emergence in vitro of EGFR TKI resistant clones. CONCLUSIONS: EGFR-mutant patients can derive benefit from immunization against EGF, particularly if combined with EGFR TKIs. A phase I trial of an EGF vaccine in combination with afatinib has been initiated.


Asunto(s)
Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Resistencia a Antineoplásicos , Humanos , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Conejos
7.
Pharmacogenomics ; 16(15): 1751-60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26427522

RESUMEN

Significant advances have been made in the analysis of the human genome in the first decades of the 21st century and understanding of tumor biology has matured greatly. The identification of tumor-associated mutations and the pathways involved has led to the development of targeted anticancer therapies. However, the challenge now in using chemotherapy to treat nonsmall-cell lung cancer is to identify more molecular markers predictive of drug sensitivity and determine the optimal drug sequences in order to tailor treatment to each patient. This approach could permit selection of patients who could benefit most from a specific type of chemotherapy by matching their tumor and individual genetic profile. Nevertheless, this potential has been limited so far by reliance on the single biomarker approach, though this is now on the way to being overcome through whole genome studies.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Farmacogenética , Estudio de Asociación del Genoma Completo , Humanos , Medicina de Precisión
8.
Transl Lung Cancer Res ; 4(6): 752-5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26798584

RESUMEN

Cancer treatment as we know it today has dramatically changed over the last couple of decades. It has moved from non-specific treatment to personalized approaches. As oncologist, we now have further understanding of the processes leading to carcinogenesis; this has led to develop new therapeutic options. We have cytotoxic treatments, targeted therapy and in recent years, immunotherapy; the time to "mix and match" has begun.

9.
Transl Lung Cancer Res ; 3(6): 384-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25806328

RESUMEN

Designing molecular targeted therapy with high specificity based on novel tumor biomarkers is a high priority in lung cancer research. Several molecular aberrations have been already identified in non-small cell lung cancer (NSCLC), with subsequent development of drugs targeted to these aberrations. A more recent actionable target is MET, a multifaceted receptor tyrosine kinase which frequently interacts with other key oncogenic tyrosine kinases including epidermal growth factor receptor (EGFR) and ERBB3 leading to resistance to anti-EGFR therapies. However a phase III trial enrolling only patients with MET-positive tumors was stopped in early March due to futility since there was no evidence that the addition of onartuzumab to erlotinib has any positive effect. From the results of the MET lung phase III trial, we provide new pieces of information that can contribute to further preclinical validation and also be part of the armamentarium for clinical translational research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA