Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Microbiologyopen ; 13(4): e1429, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39109824

RESUMEN

The understanding of how central metabolism and fermentation pathways regulate antimicrobial susceptibility in the anaerobic pathogen Bacteroides fragilis is still incomplete. Our study reveals that B. fragilis encodes two iron-dependent, redox-sensitive regulatory pirin protein genes, pir1 and pir2. The mRNA expression of these genes increases when exposed to oxygen and during growth in iron-limiting conditions. These proteins, Pir1 and Pir2, influence the production of short-chain fatty acids and modify the susceptibility to metronidazole and amixicile, a new inhibitor of pyruvate: ferredoxin oxidoreductase in anaerobes. We have demonstrated that Pir1 and Pir2 interact directly with this oxidoreductase, as confirmed by two-hybrid system assays. Furthermore, structural analysis using AlphaFold2 predicts that Pir1 and Pir2 interact stably with several central metabolism enzymes, including the 2-ketoglutarate:ferredoxin oxidoreductases Kor1AB and Kor2CDAEBG. We used a series of metabolic mutants and electron transport chain inhibitors to demonstrate the extensive impact of bacterial metabolism on metronidazole and amixicile susceptibility. We also show that amixicile is an effective antimicrobial against B. fragilis in an experimental model of intra-abdominal infection. Our investigation led to the discovery that the kor2AEBG genes are essential for growth and have dual functions, including the formation of 2-ketoglutarate via the reverse TCA cycle. However, the metabolic activity that bypasses the function of Kor2AEBG following the addition of phospholipids or fatty acids remains undefined. Overall, our study provides new insights into the central metabolism of B. fragilis and its regulation by pirin proteins, which could be exploited for the development of new narrow-spectrum antimicrobials in the future.


Asunto(s)
Antibacterianos , Bacteroides fragilis , Metronidazol , Bacteroides fragilis/genética , Bacteroides fragilis/efectos de los fármacos , Bacteroides fragilis/enzimología , Bacteroides fragilis/metabolismo , Metronidazol/farmacología , Metronidazol/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana , Regulación Bacteriana de la Expresión Génica
2.
J Immunol ; 213(5): 718-729, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38995166

RESUMEN

The ancient arm of innate immunity known as the complement system is a blood proteolytic cascade involving dozens of membrane-bound and solution-phase components. Although many of these components serve as regulatory molecules to facilitate controlled activation of the cascade, C1 esterase inhibitor (C1-INH) is the sole canonical complement regulator belonging to a superfamily of covalent inhibitors known as serine protease inhibitors (SERPINs). In addition to its namesake role in complement regulation, C1-INH also regulates proteases of the coagulation, fibrinolysis, and contact pathways. Despite this, the structural basis for C1-INH recognition of its target proteases has remained elusive. In this study, we present the crystal structure of the Michaelis-Menten (M-M) complex of the catalytic domain of complement component C1s and the SERPIN domain of C1-INH at a limiting resolution of 3.94 Å. Analysis of the structure revealed that nearly half of the protein/protein interface is formed by residues outside of the C1-INH reactive center loop. The contribution of these residues to the affinity of the M-M complex was validated by site-directed mutagenesis using surface plasmon resonance. Parallel analysis confirmed that C1-INH-interfacing residues on C1s surface loops distal from the active site also drive affinity of the M-M complex. Detailed structural comparisons revealed differences in substrate recognition by C1s compared with C1-INH recognition and highlight the importance of exosite interactions across broader SERPIN/protease systems. Collectively, this study improves our understanding of how C1-INH regulates the classical pathway of complement, and it sheds new light on how SERPINs recognize their cognate protease targets.


Asunto(s)
Proteína Inhibidora del Complemento C1 , Complemento C1s , Proteína Inhibidora del Complemento C1/metabolismo , Complemento C1s/metabolismo , Complemento C1s/química , Humanos , Cristalografía por Rayos X , Dominio Catalítico , Unión Proteica , Modelos Moleculares , Conformación Proteica
3.
Am J Obstet Gynecol ; 231(3): 352.e1-352.e16, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38871238

RESUMEN

BACKGROUND: In recent years, pragmatic metformin use in pregnancy has stretched to include prediabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and (most recently) preeclampsia. However, with its expanded use, concerns of unintended harm have been raised. OBJECTIVE: This study developed an experimental primate model and applied ultrahigh performance liquid chromatography coupled to triple-quadrupole mass spectrometry for direct quantitation of maternal and fetal tissue metformin levels with detailed fetal biometry and histopathology. STUDY DESIGN: Within 30 days of confirmed conception (defined as early pregnancy), 13 time-bred (timed-mated breeding) Rhesus dams with pregnancies designated for fetal necropsy were initiated on twice-daily human dose-equivalent 10 mg/kg metformin or vehicle control. Pregnant dams were maintained as pairs and fed either a control chow or 36% fat Western-style diet. Metformin or placebo vehicle control was delivered in various treats while the animals were separated via a slide. A cesarean delivery was performed at gestational day 145, and amniotic fluid and blood were collected, and the fetus and placenta were delivered. The fetus was immediately necropsied by trained primate center personnel. All fetal organs were dissected, measured, sectioned, and processed per clinical standards. Fluid and tissue metformin levels were assayed using validated ultrahigh performance liquid chromatography coupled to triple-quadrupole mass spectrometry in selected reaction monitoring against standard curves. RESULTS: Among 13 pregnancies at gestational day 145 with fetal necropsy, 1 dam and its fetal tissues had detectable metformin levels despite being allocated to the vehicle control group (>1 µmol metformin/kg maternal weight or fetal or placental tissue), whereas a second fetus allocated to the vehicle control group had severe fetal growth restriction (birthweight of 248.32 g [<1%]) and was suspected of having a fetal congenital condition. After excluding these 2 fetal pregnancies from further analyses, 11 fetuses from dams initiated on either vehicle control (n=4: 3 female and 1 male fetuses) or 10 mg/kg metformin (n=7: 5 female and 2 male fetuses) were available for analyses. Among dams initiated on metformin at gestational day 30 (regardless of maternal diet), significant bioaccumulation within the fetal kidney (0.78-6.06 µmol/kg; mean of 2.48 µmol/kg), liver (0.16-0.73 µmol/kg; mean of 0.38 µmol/kg), fetal gut (0.28-1.22 µmol/kg; mean of 0.70 µmol/kg), amniotic fluid (0.43-3.33 µmol/L; mean of 1.88 µmol/L), placenta (0.16-1.00 µmol/kg; mean of 0.50 µmol/kg), fetal serum (0.00-0.66 µmol/L; mean of 0.23 µmol/L), and fetal urine (4.10-174.10 µmol/L; mean of 38.5 µmol/L) was observed, with fetal levels near biomolar equivalent to maternal levels (maternal serum: 0.18-0.86 µmol/L [mean of 0.46 µmol/L]; maternal urine: 42.60-254.00 µmol/L [mean of 149.30 µmol/L]). Western-style diet feeding neither accelerated nor reduced metformin bioaccumulations in maternal or fetal serum, urine, amniotic fluid, placenta, or fetal tissues. In these 11 animals, fetal bioaccumulation of metformin was associated with less fetal skeletal muscle (57% lower cross-sectional area of gastrocnemius) and decreased liver, heart, and retroperitoneal fat masses (P<.05), collectively driving lower delivery weight (P<.0001) without changing the crown-rump length. Sagittal sections of fetal kidneys demonstrated delayed maturation, with disorganized glomerular generations and increased cortical thickness. This renal dysmorphology was not accompanied by structural or functional changes indicative of renal insufficiency. CONCLUSION: Our study demonstrates fetal bioaccumulation of metformin with associated fetal growth restriction and renal dysmorphology after maternal initiation of the drug within 30 days of conception in primates. Given these results and the prevalence of metformin use during pregnancy, additional investigation of any potential immediate and enduring effects of prenatal metformin use is warranted.


Asunto(s)
Retardo del Crecimiento Fetal , Hipoglucemiantes , Macaca mulatta , Metformina , Metformina/farmacocinética , Animales , Femenino , Embarazo , Retardo del Crecimiento Fetal/metabolismo , Hipoglucemiantes/farmacocinética , Riñón/metabolismo , Feto/metabolismo , Placenta/metabolismo , Líquido Amniótico/metabolismo , Modelos Animales
4.
Am J Obstet Gynecol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763341

RESUMEN

BACKGROUND: Gestational diabetes mellitus affects up to 10% of pregnancies and is classified into subtypes gestational diabetes subtype A1 (GDMA1) (managed by lifestyle modifications) and gestational diabetes subtype A2 (GDMA2) (requiring medication). However, whether these subtypes are distinct clinical entities or more reflective of an extended spectrum of normal pregnancy endocrine physiology remains unclear. OBJECTIVE: Integrated bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomics harbors the potential to reveal disease gene signatures in subsets of cells and tissue microenvironments. We aimed to combine these high-resolution technologies with rigorous classification of diabetes subtypes in pregnancy. We hypothesized that differences between preexisting type 2 and gestational diabetes subtypes would be associated with altered gene expression profiles in specific placental cell populations. STUDY DESIGN: In a large case-cohort design, we compared validated cases of GDMA1, GDMA2, and type 2 diabetes mellitus (T2DM) to healthy controls by bulk RNA-seq (n=54). Quantitative analyses with reverse transcription and quantitative PCR of presumptive genes of significant interest were undertaken in an independent and nonoverlapping validation cohort of similarly well-characterized cases and controls (n=122). Additional integrated analyses of term placental single-cell, single-nuclei, and spatial transcriptomics data enabled us to determine the cellular subpopulations and niches that aligned with the GDMA1, GDMA2, and T2DM gene expression signatures at higher resolution and with greater confidence. RESULTS: Dimensional reduction of the bulk RNA-seq data revealed that the most common source of placental gene expression variation was the diabetic disease subtype. Relative to controls, we found 2052 unique and significantly differentially expressed genes (-22 thresholds; q<0.05 Wald Test) among GDMA1 placental specimens, 267 among GDMA2, and 1520 among T2DM. Several candidate marker genes (chorionic somatomammotropin hormone 1 [CSH1], period circadian regulator 1 [PER1], phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta [PIK3CB], forkhead box O1 [FOXO1], epidermal growth factor receptor [EGFR], interleukin 2 receptor subunit beta [IL2RB], superoxide dismutase 3 [SOD3], dedicator of cytokinesis 5 [DOCK5], suppressor of glucose, and autophagy associated 1 [SOGA1]) were validated in an independent and nonoverlapping validation cohort (q<0.05 Tukey). Functional enrichment revealed the pathways and genes most impacted for each diabetes subtype, and the degree of proximal similarity to other subclassifications. Surprisingly, GDMA1 and T2DM placental signatures were more alike by virtue of increased expression of chromatin remodeling and epigenetic regulation genes, while albumin was the top marker for GDMA2 with increased expression of placental genes in the wound healing pathway. Assessment of these gene signatures in single-cell, single-nuclei, and spatial transcriptomics data revealed high specificity and variability by placental cell and microarchitecture types. For example, at the cellular and spatial (eg, microarchitectural) levels, distinguishing features were observed in extravillous trophoblasts (GDMA1) and macrophages (GDMA2). Lastly, we utilized these data to train and evaluate 4 machine learning models to estimate our confidence in predicting the control or diabetes status of placental transcriptome specimens with no available clinical metadata. CONCLUSION: Consistent with the distinct association of perinatal outcome risk, placentae from GDMA1, GDMA2, and T2DM-affected pregnancies harbor unique gene signatures that can be further distinguished by altered placental cellular subtypes and microarchitectural niches.

5.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38755006

RESUMEN

Diabetes complications such as nephropathy, retinopathy, or cardiovascular disease arise from vascular dysfunction. In this context, it has been observed that past hyperglycemic events can induce long-lasting alterations, a phenomenon termed "metabolic memory." In this study, we evaluated the genome-wide gene expression and chromatin accessibility alterations caused by transient high-glucose exposure in human endothelial cells (ECs) in vitro. We found that cells exposed to high glucose exhibited substantial gene expression changes in pathways known to be impaired in diabetes, many of which persist after glucose normalization. Chromatin accessibility analysis also revealed that transient hyperglycemia induces persistent alterations, mainly in non-promoter regions identified as enhancers with neighboring genes showing lasting alterations. Notably, activation of the NRF2 pathway through NRF2 overexpression or supplementation with the plant-derived compound sulforaphane, effectively reverses the glucose-induced transcriptional and chromatin accessibility memories in ECs. These findings underscore the enduring impact of transient hyperglycemia on ECs' transcriptomic and chromatin accessibility profiles, emphasizing the potential utility of pharmacological NRF2 pathway activation in mitigating and reversing the high-glucose-induced transcriptional and epigenetic alterations.


Asunto(s)
Epigénesis Genética , Glucosa , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Humanos , Glucosa/metabolismo , Epigénesis Genética/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Hiperglucemia/metabolismo , Hiperglucemia/genética , Cromatina/metabolismo , Cromatina/genética , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Isotiocianatos/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Sulfóxidos/farmacología
6.
J Biol Chem ; 300(5): 107236, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552741

RESUMEN

The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Borrelia burgdorferi , Vía Clásica del Complemento , Humanos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/inmunología , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/genética , Complemento C1r/metabolismo , Complemento C1r/genética , Complemento C1s/metabolismo , Complemento C1s/genética , Complemento C1s/química , Vía Clásica del Complemento/inmunología , Lipoproteínas/metabolismo , Lipoproteínas/genética , Lipoproteínas/química , Lipoproteínas/inmunología , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Unión Proteica
7.
Braz J Microbiol ; 55(1): 245-254, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38212508

RESUMEN

Plastics are widely used for diverse applications due to their versatility. However, their negative impact on ecosystems is undeniable due to their long-term degradation. Thus, there is a rising need for developing eco-friendlier alternatives to substitute fossil-based plastics, like biopolymers. PHA are synthesized intracellularly by microorganisms under stressful conditions of growth and have similar characteristics to conventional polymers, like their melting point, transition temperatures, crystallinity, and flexibility. Although it is feasible to use biopolymers for diverse industrial applications, their elevated production cost due to the supplies needed for microbiological procedures and the low productivity yields obtained have been the main limiting factors for their commercial success. The present study assessed the ability of Bacillus megaterium strain MNSH1-9K-1 to produce biopolymers using low-cost media from different kinds of fruit-peel residues. The results show that MNSH1-9K-1 can produce up to 58 g/L of PHB when grown in a medium prepared from orange-peel residues. The data obtained provide information to enhance the scalability of these kinds of biotechnological processes.


Asunto(s)
Bacillus megaterium , Polihidroxialcanoatos , Ecosistema , Biopolímeros/metabolismo , Biotecnología
8.
J Immunol ; 212(4): 689-701, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149922

RESUMEN

The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.


Asunto(s)
Complemento C1s , Vía Clásica del Complemento , Animales , Ovinos , Péptido Hidrolasas , Complemento C1/metabolismo , Endopeptidasas , Piridinas/farmacología
9.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37602278

RESUMEN

Irc24p is a benzil oxidoreductase encoded on chromosome IX of Saccharomyces cerevisiae . We identified a putative paralog, Nre1p, encoded 284 bp downstream. Both proteins are small, cytoplasmic, and are 52% identical (70% similar). PANTHER and PFAM analysis of the amino acid sequences and rigid pairwise structure alignment predicted a conserved active site and Rossmann folds in both, implicating NADH or NADPH as likely cofactors. We purified hexahistidine-tagged Irc24p and Nre1p. Both proteins catalyze the reduction of the diketone benzil with similar kinetics and a preference for NADPH. This is the first demonstration of in vitro function for Nre1p.

10.
Biochem Biophys Res Commun ; 670: 47-54, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37276790

RESUMEN

Lipoxygenases (LOXs) catalyze the oxidation of polyunsaturated fatty acids and synthesize oxylipin products that drive important cellular signaling processes in plants and animals. While there has been indirect evidence presented for the interaction of mammalian LOXs with membranes, a quantitative study of the molecular details of LOX-membrane interactions is lacking. Here, we mimicked biological membranes using surface plasmon resonance (SPR) sensor chips derivatized with 2-D planar lipophilic anchors (2D LP) to capture liposomes of varying phospholipid compositions that self-assemble into lipid bilayers on the SPR chip. The sensor chip surfaces were then used to investigate the membrane-binding properties of model LOX enzymes. SPR binding assays displayed reproducible and stable liposome capture to the sensor chip surface that allowed for the detailed characterization of LOX-membrane interactions. Our studies demonstrate a calcium-dependence for the membrane binding activities of coral 8R-LOX and human 15-LOX-2. Furthermore, our data confirm the importance of key membrane insertion loop residues in each of these LOX enzymes for membrane binding activity. Experiments utilizing model plant and human LOXs reveal differences in membrane-binding specificities. Our study establishes and validates a robust SPR-based platform using 2D LP sensor chips that allows for the detailed study of LOX-membrane interactions under different experimental conditions, including altered membrane compositions. Collectively, this investigation improves our overall understanding of LOX-membrane interaction properties, and our SPR-based approach holds potential for future use in the development of LOX-based therapeutics.


Asunto(s)
Lipooxigenasas , Resonancia por Plasmón de Superficie , Animales , Humanos , Membrana Dobles de Lípidos , Membrana Celular , Liposomas , Mamíferos
11.
J Biol Chem ; 299(8): 104972, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380082

RESUMEN

Borrelial pathogens are vector-borne etiological agents known to cause Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind components of the human complement system to evade host immunity. One borrelial lipoprotein, BBK32, protects the Lyme disease spirochete from complement-mediated attack via an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical complement pathway, C1r. In addition, the B. miyamotoi BBK32 orthologs FbpA and FbpB also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever-causing spirochetes, remains unknown. Here, we report the crystal structure of the C-terminal domain of Borrelia hermsii FbpC to a limiting resolution of 1.5 Å. We used surface plasmon resonance and assays of complement function to demonstrate that FbpC retains potent BBK32-like anticomplement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. Taken together, these results advance our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveal a surprising plasticity in the structures of borrelial C1r inhibitors.


Asunto(s)
Proteínas Bacterianas , Borrelia , Proteínas Inactivadoras del Complemento 1 , Enfermedad de Lyme , Fiebre Recurrente , Humanos , Proteínas Bacterianas/química , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Fiebre Recurrente/inmunología , Fiebre Recurrente/microbiología , Proteínas Inactivadoras del Complemento 1/química , Dominios Proteicos , Cristalografía por Rayos X
12.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909632

RESUMEN

Borrelial pathogens are vector-borne etiological agents of Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind to components of the human complement system. BBK32 is an example of a borrelial lipoprotein that protects the Lyme disease spirochete from complement-mediated attack. The complement inhibitory activity of BBK32 arises from an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical pathway, C1r. Borrelia miyamotoi spirochetes encode BBK32 orthologs termed FbpA and FbpB, and these proteins also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever spirochetes, remains unknown. Here we report the crystal structure of the C-terminal domain of B. hermsii FbpC to a limiting resolution of 1.5 Å. Surface plasmon resonance studies and assays of complement function demonstrate that FbpC retains potent BBK32-like anti-complement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out 1 µs molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. This study advances our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveals a surprising plasticity in the structures of borrelial C1r inhibitors.

13.
Cell Immunol ; 384: 104664, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642016

RESUMEN

This study focused on soluble (s)CD25-mediated regulation of IL-2 signaling in murine and human CD4+ T cells. Recombinant sCD25 reversibly sequestered IL-2 to limit acute maximal proliferative responses while preserving IL-2 bioavailability to subsequently maintain low-zone IL-2 signaling during prolonged culture. By inhibiting IL-2 signaling during acute activation, sCD25 suppressed T-cell growth and inhibited IL-2-evoked transmembrane CD25 expression, thereby resulting in lower prevalence of CD25high T cells. By inhibiting IL-2 signaling during quiescent IL-2-mediated growth, sCD25 competed with transmembrane CD25, IL2Rßγ, and IL2Rαßγ receptors for limited pools of IL-2 such that sCD25 exhibited strong or weak inhibitory efficacy in IL-2-stimulated cultures of CD25low or CD25high T cells, respectively. Preferential blocking of IL-2 signaling in CD25low but not CD25high T cells caused competitive enrichment of CD25high memory/effector and regulatory FOXP3+ subsets. In conclusion, sCD25 modulates IL-2 bioavailability to limit CD25 expression during acute activation while enhancing CD25highT-cell dominance during low-zone homeostatic IL-2-mediated expansion, thereby 'flattening' the inflammatory curve over time.


Asunto(s)
Interleucina-2 , Linfocitos T Reguladores , Humanos , Ratones , Animales , Linfocitos T Reguladores/metabolismo , Interleucina-2/metabolismo , Células T de Memoria , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Factores de Transcripción Forkhead/metabolismo
14.
Cell Immunol ; 381: 104603, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36182705

RESUMEN

Human recombinant B cell activating factor (BAFF) is secreted as 3-mers, which can associate to form 60-mers in culture supernatants. However, the presence of BAFF multimers in humans is still debated and it is incompletely understood how BAFF multimers activate the B cells. Here, we demonstrate that BAFF can exist as 60-mers or higher order multimers in human plasma. In vitro, BAFF 60-mer strongly induced the transcriptome of B cells which was partly attenuated by antagonism using a soluble fragment of BAFF receptor 3. Furthermore, compared to BAFF 3-mer, BAFF 60-mer strongly induced a transient classical and prolonged alternate NF-κB signaling, glucose oxidation by both aerobic glycolysis and oxidative phosphorylation, and succinate utilization by mitochondria. BAFF antagonism selectively attenuated classical NF-κB signaling and glucose oxidation. Altogether, our results suggest critical roles of BAFF 60-mer and its BAFF receptor 3 binding site in hyperactivation of B cells.

15.
J Biol Chem ; 298(11): 102557, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36183830

RESUMEN

Proteolytic cascades comprise several important physiological systems, including a primary arm of innate immunity called the complement cascade. To safeguard against complement-mediated attack, the etiologic agent of Lyme disease, Borreliella burgdorferi, produces numerous outer surface-localized lipoproteins that contribute to successful complement evasion. Recently, we discovered a pair of B. burgdorferi surface lipoproteins of the OspEF-related protein family-termed ElpB and ElpQ-that inhibit antibody-mediated complement activation. In this study, we investigate the molecular mechanism of ElpB and ElpQ complement inhibition using an array of biochemical and biophysical approaches. In vitro assays of complement activation show that an independently folded homologous C-terminal domain of each Elp protein maintains full complement inhibitory activity and selectively inhibits the classical pathway. Using binding assays and complement component C1s enzyme assays, we show that binding of Elp proteins to activated C1s blocks complement component C4 cleavage by competing with C1s-C4 binding without occluding the active site. C1s-mediated C4 cleavage is dependent on activation-induced binding sites, termed exosites. To test whether these exosites are involved in Elp-C1s binding, we performed site-directed mutagenesis, which showed that ElpB and ElpQ binding require C1s residues in the anion-binding exosite located on the serine protease domain of C1s. Based on these results, we propose a model whereby ElpB and ElpQ exploit activation-induced conformational changes that are normally important for C1s-mediated C4 cleavage. Our study expands the known complement evasion mechanisms of microbial pathogens and reveals a novel molecular mechanism for selective C1s inhibition by Lyme disease spirochetes.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Complemento C1s/química , Complemento C1s/metabolismo , Borrelia burgdorferi/genética , Complemento C4/química , Proteínas del Sistema Complemento/metabolismo , Serina Proteasas , Lipoproteínas/genética
16.
J Thromb Haemost ; 20(11): 2656-2665, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35996342

RESUMEN

BACKGROUND: Anti-platelet factor 4 (PF4)/heparin immune complexes that cause heparin-induced thrombocytopenia (HIT) activate complement via the classical pathway. Previous studies have shown that the alternative pathway of complement substantially amplifies the classical pathway of complement activation through the C3b feedback cycle. OBJECTIVES: These studies sought to examine the contributions of the alternative pathway to complement activation by HIT antibodies. METHODS: Using IgG monoclonal (KKO) and/or patient-derived HIT antibodies, we compared the effects of classical pathway (BBK32 and C1-esterase inhibitor [C1-INH]), alternative pathway (anti-factor B [fB] or factor D [fD] inhibitor) or combined classical and alternative pathway inhibition (soluble complement receptor 1 [sCR1]) in whole blood or plasma. RESULTS: Classical pathway inhibitors BBK32 and C1-INH and the combined classical/alternative pathway inhibitor sCR1 prevented KKO/HIT immune complex-induced complement activation, including release of C3 and C5 activation products, binding of immune complexes to B cells, and neutrophil activation. The alternative pathway inhibitors fB and fD, however, did not affect complement activation by KKO/HIT immune complexes. Similarly, alternative pathway inhibition had no effect on complement activation by unrelated immune complexes consisting of anti-dinitrophenyl (DNP) antibody and the multivalent DNP--keyhole limpet hemocyanin antigen. CONCLUSIONS: Collectively, these findings suggest the alternative pathway contributes little in support of complement activation by HIT immune complexes. Additional in vitro and in vivo studies are required to examine if this property is shared by most IgG-containing immune complexes or if predominance of the classic pathway is limited to immune complexes composed of multivalent antigens.


Asunto(s)
Complejo Antígeno-Anticuerpo , Trombocitopenia , Humanos , Factor D del Complemento , Heparina/efectos adversos , Activación de Complemento , Proteínas del Sistema Complemento , Inmunoglobulina G , Receptores de Complemento , Esterasas/efectos adversos
17.
Front Immunol ; 13: 887742, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865516

RESUMEN

The protein gC1qR/C1qBP/HABP-1 plays an essential role in mitochondrial biogenesis, but becomes localized at the cellular surface in numerous pathophysiological states. When this occurs on endothelial cells, surface-exposed gC1qR activates the classical pathway of complement. It also promotes assembly of a multi-protein complex comprised of coagulation factor XII (FXII), pre-kallikrein (PK), and high-molecular weight kininogen (HMWK) that activates the contact system and the kinin-generating system. Since surface-exposed gC1qR triggers intravascular inflammatory pathways, there is interest in identifying molecules that block gC1qR function. Here we further that objective by reporting the outcome of a structure/function investigation of gC1qR, its interactions with FXII, and the impact of a panel of monoclonal anti-gC1qR antibodies on FXII binding to gC1qR. Although deletion mutants have been used extensively to assess gC1qR function, none of these proteins have been characterized structurally. To that end, we determined a 2.2 Å resolution crystal structure of a gC1qR mutant lacking both of its acidic loops, but which retained nanomolar-affinity binding to FXII and FXIIa. This structure revealed that the trimeric gC1qR assembly was maintained despite loss of roughly thirty residues. Characterization of a novel panel of anti-gC1qR monoclonal antibodies identified several with biochemical properties distinct from previously described antibodies, as well as one which bound to the first acidic loop of gC1qR. Intriguingly, we found that each of these antibodies could partly inhibit binding of FXII and FXIIa to gC1qR. Based on these results and previously published studies, we offer new perspectives for developing gC1qR inhibitors.


Asunto(s)
Anticuerpos Monoclonales , Factor XII , Membrana Celular/metabolismo , Células Endoteliales/metabolismo , Factor XII/genética , Factor XII/metabolismo , Quininógeno de Alto Peso Molecular/metabolismo
18.
Front Immunol ; 13: 886733, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693799

RESUMEN

Pathogens that traffic in the blood of their hosts must employ mechanisms to evade the host innate immune system, including the complement cascade. The Lyme disease spirochete, Borreliella burgdorferi, has evolved numerous outer membrane lipoproteins that interact directly with host proteins. Compared to Lyme disease-associated spirochetes, relatively little is known about how an emerging tick-borne spirochetal pathogen, Borrelia miyamotoi, utilizes surface lipoproteins to interact with a human host. B. burgdorferi expresses the multifunctional lipoprotein, BBK32, that inhibits the classical pathway of complement through interaction with the initiating protease C1r, and also interacts with fibronectin using a separate intrinsically disordered domain. B. miyamotoi encodes two separate bbk32 orthologs denoted fbpA and fbpB; however, the activities of these proteins are unknown. Here, we show that B. miyamotoi FbpA binds human fibronectin in a manner similar to B. burgdorferi BBK32, whereas FbpB does not. FbpA and FbpB both bind human complement C1r and protect a serum-sensitive B. burgdorferi strain from complement-mediated killing, but surprisingly, differ in their ability to recognize activated C1r versus zymogen states of C1r. To better understand the observed differences in C1r recognition and inhibition properties, high-resolution X-ray crystallography structures were solved of the C1r-binding regions of B. miyamotoi FbpA and FbpB at 1.9Å and 2.1Å, respectively. Collectively, these data suggest that FbpA and FbpB have partially overlapping functions but are functionally and structurally distinct. The data presented herein enhances our overall understanding of how bloodborne pathogens interact with fibronectin and modulate the complement system.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi , Borrelia , Enfermedad de Lyme , Borrelia/fisiología , Proteínas del Sistema Complemento/metabolismo , Fibronectinas , Humanos , Lipoproteínas
19.
Vaccines (Basel) ; 10(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35632485

RESUMEN

Massive testing is a cornerstone in efforts to effectively track infections and stop COVID-19 transmission, including places with good vaccination coverage. However, SARS-CoV-2 testing by RT-qPCR requires specialized personnel, protection equipment, commercial kits, and dedicated facilities, which represent significant challenges for massive testing in resource-limited settings. It is therefore important to develop testing protocols that are inexpensive, fast, and sufficiently sensitive. Here, we optimized the composition of a buffer (PKTP), containing a protease, a detergent, and an RNase inhibitor, which is compatible with the RT-qPCR chemistry, allowing for direct SARS-CoV-2 detection from saliva without extracting RNA. PKTP is compatible with heat inactivation, reducing the biohazard risk of handling samples. We assessed the PKTP buffer performance in comparison to the RNA-extraction-based protocol of the US Centers for Disease Control and Prevention in saliva samples from 70 COVID-19 patients finding a good sensitivity (85.7% for the N1 and 87.1% for the N2 target) and correlations (R = 0.77, p < 0.001 for N1, and R = 0.78, p < 0.001 for N2). We also propose an auto-collection protocol for saliva samples and a multiplex reaction to minimize the PCR reaction number per patient and further reduce costs and processing time of several samples, while maintaining diagnostic standards in favor of massive testing.

20.
Proc Natl Acad Sci U S A ; 119(13): e2117770119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35312359

RESUMEN

Spirochetal pathogens, such as the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, encode an abundance of lipoproteins; however, due in part to their evolutionary distance from more well-studied bacteria, such as Proteobacteria and Firmicutes, few spirochetal lipoproteins have assigned functions. Indeed, B. burgdorferi devotes almost 8% of its genome to lipoprotein genes and interacts with its environment primarily through the production of at least 80 surface-exposed lipoproteins throughout its tick vector­vertebrate host lifecycle. Several B. burgdorferi lipoproteins have been shown to serve roles in cellular adherence or immune evasion, but the functions for most B. burgdorferi surface lipoproteins remain unknown. In this study, we developed a B. burgdorferi lipoproteome screening platform utilizing intact spirochetes that enables the identification of previously unrecognized host interactions. As spirochetal survival in the bloodstream is essential for dissemination, we targeted our screen to C1, the first component of the classical (antibody-initiated) complement pathway. We identified two high-affinity C1 interactions by the paralogous lipoproteins, ElpB and ElpQ (also termed ErpB and ErpQ, respectively). Using biochemical, microbiological, and biophysical approaches, we demonstrate that ElpB and ElpQ bind the activated forms of the C1 proteases, C1r and C1s, and represent a distinct mechanistic class of C1 inhibitors that protect the spirochete from antibody-mediated complement killing. In addition to identifying a mode of complement inhibition, our study establishes a lipoproteome screening methodology as a discovery platform for identifying direct host­pathogen interactions that are central to the pathogenesis of spirochetes, such as the Lyme disease agent.


Asunto(s)
Proteínas Bacterianas , Borrelia burgdorferi , Complemento C1q , Evasión Inmune , Lipoproteínas , Enfermedad de Lyme , Proteínas Bacterianas/inmunología , Borrelia burgdorferi/inmunología , Complemento C1q/inmunología , Humanos , Inmunoglobulinas/inmunología , Lipoproteínas/inmunología , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Proteoma/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...