Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
J Pers Med ; 14(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38929847

RESUMEN

El Hierro is the smallest and westernmost island of the Canary Islands, whose population derives from an admixture of different ancestral components and that has been subjected to genetic isolation. We established the "El Hierro Genome Study" to characterize the health status and the genetic composition of ~10% of the current population of the island, accounting for a total of 1054 participants. Detailed demographic and clinical data and a blood sample for DNA extraction were obtained from each participant. Genomic genotyping was performed with the Global Screening Array (Illumina). The genetic composition of El Hierro was analyzed in a subset of 416 unrelated individuals by characterizing the mitochondrial DNA (mtDNA) and Y-chromosome haplogroups and performing principal component analyses (PCAs). In order to explore signatures of isolation, runs of homozygosity (ROHs) were also estimated. Among the participants, high blood pressure, hypercholesterolemia, and diabetes were the most prevalent conditions. The most common mtDNA haplogroups observed were of North African indigenous origin, while the Y-chromosome ones were mainly European. The PCA showed that the El Hierro population clusters near 1000 Genomes' European population but with a shift toward African populations. Moreover, the ROH analysis revealed some individuals with an important portion of their genomes with ROHs exceeding 400 Mb. Overall, these results confirmed that the "El Hierro Genome" cohort offers an opportunity to study the genetic basis of several diseases in an unexplored isolated population.

2.
Healthcare (Basel) ; 12(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38470684

RESUMEN

(1) Background: Hereditary fructose intolerance (HFI) is a rare autosomal recessive metabolic disorder resulting from aldolase B deficiency, requiring a fructose, sorbitol and sucrose (FSS)-free diet. Limited information exists on the relationship between pregnancy outcomes and HFI. This study aims to analyze pregnancy-related factors in a cohort of thirty Spanish women, with twenty-three being carriers and seven being HFI-affected (45 pregnancies). (2) Methods: A descriptive, cross-sectional and retrospective study utilized an anonymous questionnaire. (3) Results: Findings encompassed physical and emotional states, nutritional habits, pathology development and baby information. Notable results include improved physical and emotional states compared to the general population, with conventional analyses mostly within normal ranges. Persistent issues after pregnancy included hepatic steatosis, liver adenomas and hemangiomas. Carrier mothers' babies exhibited higher weight than those of patient mothers, while the weights of carrier children born with HFI were similar to disease-affected children. (4) Conclusions: Pregnant women with HFI did not significantly differ in physical and emotional states, except for nausea, vomiting, and cravings. Post-pregnancy, HFI patients and carriers exhibited persistent hepatic issues. Significantly, babies born to HFI-affected mothers had lower weights. This study sheds light on pregnancy outcomes in HFI, emphasizing potential complications and the need for ongoing monitoring and care.

3.
Nat Commun ; 15(1): 1797, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413589

RESUMEN

Activation of the replicative Mcm2-7 helicase by loading GINS and Cdc45 is crucial for replication origin firing, and as such for faithful genetic inheritance. Our biochemical and structural studies demonstrate that the helicase activator GINS interacts with TopBP1 through two separate binding surfaces, the first involving a stretch of highly conserved amino acids in the TopBP1-GINI region, the second a surface on TopBP1-BRCT4. The two surfaces bind to opposite ends of the A domain of the GINS subunit Psf1. Mutation analysis reveals that either surface is individually able to support TopBP1-GINS interaction, albeit with reduced affinity. Consistently, either surface is sufficient for replication origin firing in Xenopus egg extracts and becomes essential in the absence of the other. The TopBP1-GINS interaction appears sterically incompatible with simultaneous binding of DNA polymerase epsilon (Polε) to GINS when bound to Mcm2-7-Cdc45, although TopBP1-BRCT4 and the Polε subunit PolE2 show only partial competitivity in binding to Psf1. Our TopBP1-GINS model improves the understanding of the recently characterised metazoan pre-loading complex. It further predicts the coordination of three molecular origin firing processes, DNA polymerase epsilon arrival, TopBP1 ejection and GINS integration into Mcm2-7-Cdc45.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa II/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Replicación Viral
4.
Orphanet J Rare Dis ; 19(1): 12, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183105

RESUMEN

BACKGROUND: Hereditary fructose intolerance (HFI) is a rare metabolic disease caused by aldolase B deficiency. The aim of our study was to analyse excipient tolerability in patients with HFI and other related diseases and to design mobile and website health applications to facilitate the search for drugs according to their tolerance. RESULTS: A total of 555 excipients listed in the Spanish Medicines Agency database (July 2023) were classified as suitable for HFI patients, suitable with considerations ((glucose and glucose syrup, intravenous sucrose, oral mannitol, polydextrose, gums and carrageenans, ethanol, sulfite caramel and vanilla), not recommended (intravenous mannitol) and contraindicated (fructose, oral sucrose, invert sugar, sorbitol, maltitol, lactitol, isomaltitol, fruit syrups, honey, sucrose esters and sorbitol esters). Glucose and glucose syrup were classified as suitable with considerations due to its possible fructose content and their potential endogenous fructose production. For other related intolerances, wheat starch was contraindicated and oatmeal was not recommended in celiac disease; oral lactose and lactose-based coprocessed excipient (Cellactose®) were not recommended in lactose intolerance; and glucose, invert sugar and oral sucrose were not recommended in diabetes mellitus. The applications were named IntoMed®. Results are listed in order of tolerability (suitable drugs appear first and contraindicated drugs at the end), and they are accompanied by a note detailing their classified excipients. If a drug contains excipients within different categories, the overall classification will be the most restrictive. The apps are also able to classify substances with the same criteria if they act as active ingredients. The tools exhibited good usability (82.07 ± 13.46 points on the System Usability Scale [range: 0-100]) on a sample of HFI patients, their families and health care professionals. CONCLUSIONS: IntoMed® is a tool for finding information about the tolerability of drugs according to excipients for patients with HFI and other related intolerances, with good usability. It is a fast and reliable system that covers the current excipient legislation and expands on it with other specific information: HFI patients should be alert for excipients such as mannitol (especially in intravenous drugs), fruit syrups, honey, sulfite caramel or vanilla. Glucose might contain or produce fructose, and special precaution is needed because of potential errors in their composition.


Asunto(s)
Intolerancia a la Fructosa , Humanos , Excipientes , Lactosa , Fructosa , Manitol , Sorbitol , Glucosa , Sacarosa , Sulfitos
5.
J Med Chem ; 66(22): 15189-15204, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37940118

RESUMEN

EPI-X4, a natural peptide CXCR4 antagonist, shows potential for treating inflammation and cancer, but its short plasma stability limits its clinical application. We aimed to improve the plasma stability of EPI-X4 analogues without compromising CXCR4 antagonism. Our findings revealed that only the peptide N-terminus is prone to degradation. Consequently, incorporating d-amino acids or acetyl groups in this region enhanced peptide stability in plasma. Notably, EPI-X4 leads 5, 27, and 28 not only retained their CXCR4 binding and antagonism but also remained stable in plasma for over 8 h. Molecular dynamic simulations showed that these modified analogues bind similarly to CXCR4 as the original peptide. To further increase their systemic half-lives, we conjugated these stabilized analogues with large polymers and albumin binders. These advances highlight the potential of the optimized EPI-X4 analogues as promising CXCR4-targeted therapeutics and set the stage for more detailed preclinical assessments.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/metabolismo , Péptidos/química , Receptores CXCR4/metabolismo , Albúminas/metabolismo , Transducción de Señal , Aminas/metabolismo
7.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445740

RESUMEN

Whooping cough is a severe childhood disease, caused by the bacterium Bordetella pertussis, which releases pertussis toxin (PT) as a major virulence factor. Previously, we identified the human antimicrobial peptides α-defensin-1 and -5 as inhibitors of PT and demonstrated their capacity to inhibit the activity of the PT enzyme subunit PTS1. Here, the underlying mechanism of toxin inhibition was investigated in more detail, which is essential for developing the therapeutic potential of these peptides. Flow cytometry and immunocytochemistry revealed that α-defensin-5 strongly reduced PT binding to, and uptake into cells, whereas α-defensin-1 caused only a mild reduction. Conversely, α-defensin-1, but not α-defensin-5 was taken up into different cell lines and interacted with PTS1 inside cells, based on proximity ligation assay. In-silico modeling revealed specific interaction interfaces for α-defensin-1 with PTS1 and vice versa, unlike α-defensin-5. Dot blot experiments showed that α-defensin-1 binds to PTS1 and even stronger to its substrate protein Gαi in vitro. NADase activity of PTS1 in vitro was not inhibited by α-defensin-1 in the absence of Gαi. Taken together, these results suggest that α-defensin-1 inhibits PT mainly by inhibiting enzyme activity of PTS1, whereas α-defensin-5 mainly inhibits cellular uptake of PT. These findings will pave the way for optimization of α-defensins as novel therapeutics against whooping cough.


Asunto(s)
Tos Ferina , Humanos , Niño , Toxina del Pertussis/farmacología , Tos Ferina/microbiología , Bordetella pertussis , Proteínas , Línea Celular
8.
Sci Adv ; 9(27): eadf8251, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37406129

RESUMEN

Semen is an important vector for sexual HIV-1 transmission. Although CXCR4-tropic (X4) HIV-1 may be present in semen, almost exclusively CCR5-tropic (R5) HIV-1 causes systemic infection after sexual intercourse. To identify factors that may limit sexual X4-HIV-1 transmission, we generated a seminal fluid-derived compound library and screened it for antiviral agents. We identified four adjacent fractions that blocked X4-HIV-1 but not R5-HIV-1 and found that they all contained spermine and spermidine, abundant polyamines in semen. We showed that spermine, which is present in semen at concentrations up to 14 mM, binds CXCR4 and selectively inhibits cell-free and cell-associated X4-HIV-1 infection of cell lines and primary target cells at micromolar concentrations. Our findings suggest that seminal spermine restricts sexual X4-HIV-1 transmission.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Espermidina/farmacología , Espermina/farmacología , Infecciones por VIH/tratamiento farmacológico , Línea Celular , Receptores CXCR4
9.
J Am Chem Soc ; 145(28): 15251-15264, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37392180

RESUMEN

Binding of microtubule filaments by the conserved Ndc80 protein is required for kinetochore-microtubule attachments in cells and the successful distribution of the genetic material during cell division. The reversible inhibition of microtubule binding is an important aspect of the physiological error correction process. Small molecule inhibitors of protein-protein interactions involving Ndc80 are therefore highly desirable, both for mechanistic studies of chromosome segregation and also for their potential therapeutic value. Here, we report on a novel strategy to develop rationally designed inhibitors of the Ndc80 Calponin-homology domain using Supramolecular Chemistry. With a multiple-click approach, lysine-specific molecular tweezers were assembled to form covalently fused dimers to pentamers with a different overall size and preorganization/stiffness. We identified two dimers and a trimer as efficient Ndc80 CH-domain binders and have shown that they disrupt the interaction between Ndc80 and microtubules at low micromolar concentrations without affecting microtubule dynamics. NMR spectroscopy allowed us to identify the biologically important lysine residues 160 and 204 as preferred tweezer interaction sites. Enhanced sampling molecular dynamics simulations provided a rationale for the binding mode of multivalent tweezers and the role of pre-organization and secondary interactions in targeting multiple lysine residues across a protein surface.


Asunto(s)
Lisina , Proteínas Asociadas a Microtúbulos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Lisina/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/química , Microtúbulos/metabolismo
10.
AIDS Res Ther ; 20(1): 48, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452343

RESUMEN

BACKGROUND: Actinomycosis is an unusual chronic bacterial infection, even rarer in people living with HIV. It is not considered an AIDS-defining disease. However, the role in co-presentation or overlap with other opportunistic conditions of advanced HIV is unknown. CASE PRESENTATION: A 49-year-old Peruvian male presented with a 4-month history of dysphagia, odynophagia, hyporexia and wasting. He underwent an upper digestive endoscopy, in which ulcers with a necrotic center were observed, therefore, the initial diagnostic assumption was esophageal cancer. Subsequent pathology report excluded neoplasms and confirmed the diagnosis of actinomycosis. Serology for human immunodeficiency virus was requested, yielding a positive result. Antimicrobial treatment with amoxicillin and antiretroviral therapy were indicated, with slow clinical improvement. After 4 months, epigastric discomfort presented, for which a new upper digestive endoscopy was performed, revealing a deep gastric ulcer, which was compatible with diffuse large B-cell non-Hodgkin lymphoma. CONCLUSION: Esophageal actinomycosis in people living with HIV is very rare. We suggest HIV-associated immunosuppression is not enough to allow for actinomycosis to develop, and masked underlying entities should be sought. The existence of such entities in people living with HIV should raise awareness of the possibility of unmasked immune reconstitution inflammatory syndrome once treatment has started.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Actinomicosis , Infecciones por VIH , Síndrome Inflamatorio de Reconstitución Inmune , Linfoma no Hodgkin , Humanos , Masculino , Persona de Mediana Edad , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , VIH , Síndrome Inflamatorio de Reconstitución Inmune/complicaciones , Actinomicosis/diagnóstico , Actinomicosis/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida/complicaciones , Linfoma no Hodgkin/complicaciones , Linfoma no Hodgkin/tratamiento farmacológico
11.
Nat Commun ; 14(1): 4500, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495625

RESUMEN

Non-covalent interactions such as van der Waals interactions and hydrogen bonds are crucial for the chiral induction and control of molecules, but it remains difficult to study them at the single-molecule level. Here, we report a carbene molecule on a copper surface as a prototype of an anchored molecule with a facile chirality change. We examine the influence of the attractive van der Waals interactions on the chirality change by regulating the tip-molecule distance, resulting in an excess of a carbene enantiomer. Our model study provides insight into the change of molecular chirality controlled by van der Waals interactions, which is fundamental for understanding the mechanisms of chiral induction and amplification.

12.
J Med Chem ; 66(13): 8484-8497, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37328158

RESUMEN

The peptide fragment of human serum albumin that was identified as an inhibitor of C-X-C motif chemokine receptor 4 (CXCR4), termed EPI-X4, was investigated as a scaffold for the development of CXCR4-targeting radio-theragnostics. Derivatives of its truncated version JM#21 (ILRWSRKLPCVS) were conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and tested in Jurkat and Ghost-CXCR4 cells. Ligand-1, -2, -5, -6, -7, -8, and -9 were selected for radiolabeling. Molecular modeling indicated that 177Lu-DOTA incorporation C-terminally did not interfere with the CXCR4 binding. Lipophilicity, in vitro plasma stability, and cellular uptake hinted 177Lu-7 as superior. In Jurkat xenografts, all radioligands showed >90% washout from the body within an hour, with the exception of 177Lu-7 and 177Lu-9. 177Lu-7 demonstrated best CXCR4-tumor targeting. Ex vivo biodistribution and single-photon emission computed tomography (SPECT)/positron emission tomography (PET)/CT imaging of 177Lu-7/68Ga-7 showed the same distribution profile for both radioligands, characterized by very low uptake in all nontargeted organs except the kidneys. The data support the feasibility of CXCR4-targeting with EPI-X4-based radioligands and designate ligand-7 as a lead candidate for further optimization.


Asunto(s)
Tomografía de Emisión de Positrones , Radioisótopos , Humanos , Radioisótopos/química , Distribución Tisular , Ligandos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único , Línea Celular Tumoral , Receptores CXCR4/metabolismo
13.
J Am Chem Soc ; 145(21): 11544-11552, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37207364

RESUMEN

A novel surface-confined C-C coupling reaction involving two carbene molecules and a water molecule was studied by scanning tunneling microscopy in real space. Carbene fluorenylidene was generated from diazofluorene in the presence of water on a silver surface. While in the absence of water, fluorenylidene covalently binds to the surface to form a surface metal carbene, and water can effectively compete with the silver surface in reacting with the carbene. Water molecules in direct contact with fluorenylidene protonate the carbene to form the fluorenyl cation before the carbene can bind to the surface. In contrast, the surface metal carbene does not react with water. The fluorenyl cation is highly electrophilic and draws electrons from the metal surface to generate the fluorenyl radical which is mobile on the surface at cryogenic temperatures. The final step in this reaction sequence is the reaction of the radical with a remaining fluorenylidene molecule or with diazofluorene to produce the C-C coupling product. Both a water molecule and the metal surface are essential for the consecutive proton and electron transfer followed by C-C coupling. This C-C coupling reaction is unprecedented in solution chemistry.

14.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198527

RESUMEN

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Humanos , Péptidos , Amiloide/química , Antibacterianos/farmacología , Hemoglobinas
15.
Pharmacol Rev ; 75(2): 263-308, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36549866

RESUMEN

Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.


Asunto(s)
Productos Biológicos , COVID-19 , Animales , Organofosfatos/farmacología , SARS-CoV-2 , Proteínas Amiloidogénicas , Mamíferos
16.
J Med Virol ; 95(1): e28124, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36056630

RESUMEN

Host cell proteases such as TMPRSS2 are critical determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tropism and pathogenesis. Here, we show that antithrombin (AT), an endogenous serine protease inhibitor regulating coagulation, is a broad-spectrum inhibitor of coronavirus infection. Molecular docking and enzyme activity assays demonstrate that AT binds and inhibits TMPRSS2, a serine protease that primes the Spike proteins of coronaviruses for subsequent fusion. Consequently, AT blocks entry driven by the Spikes of SARS-CoV, MERS-CoV, hCoV-229E, SARS-CoV-2 and its variants of concern including Omicron, and suppresses lung cell infection with genuine SARS-CoV-2. Thus, AT is an endogenous inhibitor of SARS-CoV-2 that may be involved in COVID-19 pathogenesis. We further demonstrate that activation of AT by anticoagulants, such as heparin or fondaparinux, increases the anti-TMPRSS2 and anti-SARS-CoV-2 activity of AT, suggesting that repurposing of native and activated AT for COVID-19 treatment should be explored.


Asunto(s)
COVID-19 , Humanos , Antitrombinas/farmacología , Línea Celular , Tratamiento Farmacológico de COVID-19 , Simulación del Acoplamiento Molecular , SARS-CoV-2/metabolismo , Internalización del Virus , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/metabolismo , Serina Endopeptidasas/genética
17.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499357

RESUMEN

Advanced derivatives of the Endogenous Peptide Inhibitor of CXCR4 (EPI-X4) have shown therapeutic efficacy upon topical administration in animal models of asthma and dermatitis. Here, we studied the plasma stability of the EPI-X4 lead compounds WSC02 and JM#21, using mass spectrometry to monitor the chemical integrity of the peptides and a functional fluorescence-based assay to determine peptide function in a CXCR4-antibody competition assay. Although mass spectrometry revealed very rapid disappearance of both peptides in human plasma within seconds, the functional assay revealed a significantly higher half-life of 9 min for EPI-X4 WSC02 and 6 min for EPI-X4 JM#21. Further analyses demonstrated that EPI-X4 WSC02 and EPI-X4 JM#21 interact with low molecular weight plasma components and serum albumin. Albumin binding is mediated by the formation of a disulfide bridge between Cys10 in the EPI-X4 peptides and Cys34 in albumin. These covalently linked albumin-peptide complexes have a higher stability in plasma as compared with the non-bound peptides and retain the ability to bind and antagonize CXCR4. Remarkably, chemically synthesized albumin-EPI-X4 conjugates coupled by non-breakable bonds have a drastically increased plasma stability of over 2 h. Thus, covalent coupling of EPI-X4 to albumin in vitro before administration or in vivo post administration may significantly increase the pharmacokinetic properties of this new class of CXCR4 antagonists.


Asunto(s)
Receptores CXCR4 , Albúmina Sérica Humana , Animales , Humanos , Receptores CXCR4/metabolismo , Péptidos/química , Semivida , Albúmina Sérica/metabolismo
18.
Antibiotics (Basel) ; 11(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36551365

RESUMEN

Multi-drug resistance in bacteria is a major health problem worldwide. To overcome this issue, new approaches allowing for the identification and development of antibacterial agents are urgently needed. Peptides, due to their binding specificity and low expected side effects, are promising candidates for a new generation of antibiotics. For over two decades, a large diversity of antimicrobial peptides (AMPs) has been discovered and annotated in public databases. The AMP family encompasses nearly 20 biological functions, thus representing a potentially valuable resource for data mining analyses. Nonetheless, despite the availability of machine learning-based approaches focused on AMPs, these tools lack evidence of successful application for AMPs' discovery, and many are not designed to predict a specific function for putative AMPs, such as antibacterial activity. Consequently, among the apparent variety of data mining methods to screen peptide sequences for antibacterial activity, only few tools can deal with such task consistently, although with limited precision and generally no information about the possible targets. Here, we addressed this gap by introducing a tool specifically designed to identify antibacterial peptides (ABPs) with an estimation of which type of bacteria is susceptible to the action of these peptides, according to their response to the Gram-staining assay. Our tool is freely available via a web server named ABP-Finder. This new method ranks within the top state-of-the-art ABP predictors, particularly in terms of precision. Importantly, we showed the successful application of ABP-Finder for the screening of a large peptide library from the human urine peptidome and the identification of an antibacterial peptide.

19.
JACS Au ; 2(9): 2187-2202, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36186568

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 presents a global health emergency. Therapeutic options against SARS-CoV-2 are still very limited but urgently required. Molecular tweezers are supramolecular agents that destabilize the envelope of viruses resulting in a loss of viral infectivity. Here, we show that first-generation tweezers, CLR01 and CLR05, disrupt the SARS-CoV-2 envelope and abrogate viral infectivity. To increase the antiviral activity, a series of 34 advanced molecular tweezers were synthesized by insertion of aliphatic or aromatic ester groups on the phosphate moieties of the parent molecule CLR01. A structure-activity relationship study enabled the identification of tweezers with a markedly enhanced ability to destroy lipid bilayers and to suppress SARS-CoV-2 infection. Selected tweezer derivatives retain activity in airway mucus and inactivate the SARS-CoV-2 wildtype and variants of concern as well as respiratory syncytial, influenza, and measles viruses. Moreover, inhibitory activity of advanced tweezers against respiratory syncytial virus and SARS-CoV-2 was confirmed in mice. Thus, potentiated tweezers are broad-spectrum antiviral agents with great prospects for clinical development to combat highly pathogenic viruses.

20.
Angew Chem Int Ed Engl ; 61(43): e202212245, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36056533

RESUMEN

Chirality switching of self-assembled molecular structures is of potential interest for designing functional materials but is restricted by the strong interaction between the embedded molecules. Here, we report on an unusual approach based on reversible chirality changes of self-assembled oligomers using variable-temperature scanning tunneling microscopy supported by quantum mechanical calculations. Six functionalized diazomethanes each self-assemble into chiral wheel-shaped oligomers on Ag(111). At 130 K, a temperature far lower than expected, the oligomers change their chirality even though the molecules reside in an embedded self-assembled structure. Each chirality change is accompanied by a slight center-of-mass shift. We show how the identical activation energies of the two processes result from the interplay of the chirality change with surface diffusion, findings that open the possibility of implementing various functional materials from self-assembled supramolecular structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...