Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(7): e0045024, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38926904

RESUMEN

The Gardnerella genus, comprising at least 13 species, is associated with the polymicrobial disorder bacterial vaginosis (BV). However, the details of BV pathogenesis are poorly defined, and the contributions made by individual species, including Gardnerella spp., are largely unknown. We report here that colony phenotypes characterized by size (large and small) and opacity (opaque and translucent) are phase variable and are conserved among all tested Gardnerella strains, representing at least 10 different species. With the hypothesis that these different variants could be an important missing piece to the enigma of how BV develops in vivo, we characterized their phenotypic, proteomic, and genomic differences. Beyond increased colony size, large colony variants showed reduced vaginolysin secretion and faster growth rate relative to small colony variants. The ability to inhibit the growth of Neisseria gonorrhoeae and commensal Lactobacillus species varied by strain and, in some instances, differed between variants. Proteomics analyses indicated that 127-173 proteins were differentially expressed between variants. Proteins with increased expression in large variants of both strains were associated with amino acid and protein synthesis and protein folding, whereas those increased in small variants were related to nucleotide synthesis, phosphate transport, ABC transport, and glycogen breakdown. Furthermore, whole genome sequencing analyses revealed an abundance of genes associated with variable homopolymer tracts, implicating slipped strand mispairing in Gardnerella phase variation and illuminating the potential for previously unrecognized heterogeneity within clonal populations. Collectively, these results suggest that phase variants may be primed to serve different roles in BV pathogenesis.IMPORTANCEBacterial vaginosis is the most common gynecological disorder in women of childbearing age. Gardnerella species are crucial to the development of this dysbiosis, but the mechanisms involved in the infection are not understood. We discovered that Gardnerella species vary between two different forms, reflected in bacterial colony size. A slow-growing form makes large amounts of the toxin vaginolysin and is better able to survive in human cervix tissue. A fast-growing form is likely the one that proliferates to high numbers just prior to symptom onset and forms the biofilm that serves as a scaffold for multiple BV-associated anaerobic bacteria. Identification of the proteins that vary between different forms of the bacteria as well as those that vary randomly provides insight into the factors important for Gardnerella infection and immune avoidance.


Asunto(s)
Gardnerella , Fenotipo , Vaginosis Bacteriana , Vaginosis Bacteriana/microbiología , Femenino , Humanos , Virulencia , Gardnerella/genética , Gardnerella/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteómica , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/patogenicidad , Lactobacillus/genética , Genoma Bacteriano , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo
2.
Nat Commun ; 15(1): 3756, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704381

RESUMEN

The human pathogen Neisseria gonorrhoeae ascends into the upper female reproductive tract to cause damaging inflammation within the Fallopian tubes and pelvic inflammatory disease (PID), increasing the risk of infertility and ectopic pregnancy. The loss of ciliated cells from the epithelium is thought to be both a consequence of inflammation and a cause of adverse sequelae. However, the links between infection, inflammation, and ciliated cell extrusion remain unresolved. With the use of ex vivo cultures of human Fallopian tube paired with RNA sequencing we defined the tissue response to gonococcal challenge, identifying cytokine, chemokine, cell adhesion, and apoptosis related transcripts not previously recognized as potentiators of gonococcal PID. Unexpectedly, IL-17C was one of the most highly induced genes. Yet, this cytokine has no previous association with gonococcal infection nor pelvic inflammatory disease and thus it was selected for further characterization. We show that human Fallopian tubes express the IL-17C receptor on the epithelial surface and that treatment with purified IL-17C induces pro-inflammatory cytokine secretion in addition to sloughing of the epithelium and generalized tissue damage. These results demonstrate a previously unrecognized but critical role of IL-17C in the damaging inflammation induced by gonococci in a human explant model of PID.


Asunto(s)
Trompas Uterinas , Gonorrea , Inflamación , Interleucina-17 , Neisseria gonorrhoeae , Adulto , Femenino , Humanos , Citocinas/metabolismo , Epitelio/patología , Epitelio/microbiología , Trompas Uterinas/microbiología , Trompas Uterinas/patología , Trompas Uterinas/inmunología , Gonorrea/inmunología , Gonorrea/microbiología , Gonorrea/patología , Inflamación/patología , Inflamación/microbiología , Interleucina-17/metabolismo , Neisseria gonorrhoeae/inmunología , Neisseria gonorrhoeae/patogenicidad , Enfermedad Inflamatoria Pélvica/microbiología , Enfermedad Inflamatoria Pélvica/patología , Enfermedad Inflamatoria Pélvica/inmunología , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/genética
3.
Pathogens ; 10(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498226

RESUMEN

Gardnerella vaginalis has recently been split into 13 distinct species. In this study, we tested the hypotheses that species-specific variations in the vaginolysin (VLY) amino acid sequence could influence the interaction between the toxin and vaginal epithelial cells and that VLY variation may be one factor that distinguishes less virulent or commensal strains from more virulent strains. This was assessed by bioinformatic analyses of publicly available Gardnerella spp. sequences and quantification of cytotoxicity and cytokine production from purified, recombinantly produced versions of VLY. After identifying conserved differences that could distinguish distinct VLY types, we analyzed metagenomic data from a cohort of female subjects from the Vaginal Human Microbiome Project to investigate whether these different VLY types exhibited any significant associations with symptoms or Gardnerella spp.-relative abundance in vaginal swab samples. While Type 1 VLY was most prevalent among the subjects and may be associated with increased reports of symptoms, subjects with Type 2 VLY dominant profiles exhibited increased relative Gardnerella spp. abundance. Our findings suggest that amino acid differences alter the interaction of VLY with vaginal keratinocytes, which may potentiate differences in bacterial vaginosis (BV) immunopathology in vivo.

4.
J Bacteriol ; 202(13)2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32291280

RESUMEN

Sneathia amnii is a poorly characterized emerging pathogen that has been implicated in amnionitis and urethritis. We found that S. amnii damages fetal membranes, and we identified and purified a cytotoxic exotoxin that lyses human red blood cells and damages cells from fetal membranes. The gene appears to be cotranscribed with a second gene that encodes a protein with identity to two-partner system transporters, suggesting that it is the "A," or secreted component of a type Vb system. The toxin is 1,881 amino acids with a molecular weight of approximately 200 kDa. It binds to red blood cell membranes and forms pores with a diameter of 2.0 to 3.0 nm, resulting in osmolysis. Because it appears to be the "A" or passenger component of a two-partner system, we propose to name this novel cytotoxin/hemolysin CptA for cytopathogenic toxin component A.IMPORTANCESneathia amnii is a very poorly characterized emerging pathogen that can affect pregnancy outcome and cause urethritis and other infections. To date, nothing is known about its virulence factors or pathogenesis. We have identified and isolated a cytotoxin, named CptA for cytopathogenic toxin, component A, that is produced by S. amnii CptA is capable of permeabilizing chorionic trophoblasts and lysing human red blood cells and, thus, may play a role in virulence. Except for small domains conserved among two-partner secretion system passenger proteins, the cytotoxin exhibits little amino acid sequence homology to known toxins. In this study, we demonstrate the pore-forming activity of this novel toxin.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Fusobacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidad , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Fusobacterias/química , Fusobacterias/genética , Infecciones por Bacterias Gramnegativas/microbiología , Hemólisis/efectos de los fármacos , Humanos , Peso Molecular
5.
J Perinatol ; 39(6): 824-836, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30858609

RESUMEN

OBJECTIVE: Evidence supports an inverse association between vitamin D and bacterial vaginosis (BV) during pregnancy. Furthermore, both the vaginal microbiome and vitamin D status correlate with pregnancy outcome. Women of African ancestry are more likely to experience BV, to be vitamin D deficient, and to have certain pregnancy complications. We investigated the association between vitamin D status and the vaginal microbiome. STUDY DESIGN: Subjects were assigned to a treatment (4400 IU) or a control group (400 IU vitamin D daily), sampled three times during pregnancy, and vaginal 16S rRNA gene taxonomic profiles and plasma 25-hydroxyvitamin D [25(OH)D] concentrations were examined. RESULT: Gestational age and ethnicity were significantly associated with the microbiome. Megasphaera correlated negatively (p = 0.0187) with 25(OH)D among women of African ancestry. Among controls, women of European ancestry exhibited a positive correlation between plasma 25(OH)D and L. crispatus abundance. CONCLUSION: Certain vaginal bacteria are associated with plasma 25(OH)D concentration.


Asunto(s)
Microbiota , Vagina/microbiología , Vitamina D/análogos & derivados , Adolescente , Adulto , Femenino , Edad Gestacional , Humanos , Embarazo , Vaginosis Bacteriana/etnología , Vitamina D/administración & dosificación , Vitamina D/sangre , Vitaminas/administración & dosificación
6.
Infect Immun ; 87(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30692180

RESUMEN

Studies have implicated Gardnerella vaginalis as an important etiological agent in bacterial vaginosis (BV). It produces a cholesterol-dependent cytolysin, vaginolysin (VLY). In this study, we sought to characterize the interaction between vaginal epithelium, G. vaginalis, and VLY using EpiVaginal tissues from MatTek. These tissues are three-dimensional and have distinct apical and basolateral sides, enabling comparison of the effects of G. vaginalis and VLY following exposure to either side. We measured cytotoxicity, cytokine production, and bacterial growth, following apical versus basolateral exposure. G. vaginalis exhibited more-rapid growth in coculture with the tissue model when it was exposed to the apical side. VLY permeabilized cells on the basolateral side of the tissues but failed to permeabilize apical epithelial cells. Cytokine secretion in response to VLY and G. vaginalis also depended on the polarity of exposure. VLY did not cause significant changes in cytokine levels when exposed apically. Apical tissue challenge by G. vaginalis appeared to dampen the inflammatory response, as decreases in granulocyte-macrophage colony-stimulating factor (GM-CSF) (6.6-fold), RANTES (14.8-fold), and interferon gamma inducible protein 10 kDa (IP-10) (53-fold) and an increase in interleukin-1 receptor antagonist (IL-1ra) (5-fold) were observed. In vivo, G. vaginalis normally colonizes the apical face of the vaginal epithelium. Results from this study suggest that while G. vaginalis may grow on the apical face of the vaginal epithelium, its VLY toxin does not target these cells in this model. This phenomenon could have important implications regarding colonization of the vagina by G. vaginalis and may suggest an explanation for the lack of an overt immune response to this organism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Epitelio/microbiología , Gardnerella vaginalis/metabolismo , Vagina/microbiología , Vaginosis Bacteriana/microbiología , Femenino , Gardnerella vaginalis/genética , Gardnerella vaginalis/crecimiento & desarrollo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Vagina/patología , Vaginosis Bacteriana/genética , Vaginosis Bacteriana/metabolismo , Vaginosis Bacteriana/patología
7.
PLoS One ; 12(8): e0183765, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28846702

RESUMEN

BACKGROUND: Bacterial vaginosis (BV) is the leading dysbiosis of the vaginal microbiome. The pathways leading towards the development of BV are not well understood. Gardnerella vaginalis is frequently associated with BV. G. vaginalis produces the cholesterol-dependent cytolysin (CDC), vaginolysin, which can lyse a variety of human cells and is thought to play a role in pathogenesis. Because membrane cholesterol is required for vaginolysin to function, and because HMG-CoA reductase inhibitors (statins) affect not only serum levels of cholesterol but membrane levels as well, we hypothesized that statins might affect the vaginal microbiome. METHODS: To investigate the relationship between use of the statins and the vaginal microbiome, we analyzed 16S rRNA gene taxonomic surveys performed on vaginal samples from 133 women who participated in the Vaginal Human Microbiome Project and who were taking statins at the time of sampling, 152 women who reported high cholesterol levels but were not taking statins, and 316 women who did not report high cholesterol. To examine the effect of statins on the cytolytic effect of vaginolysin, the cholesterol-dependent cytolysin (CDC) produced by Gardnerella vaginalis, we assessed the effect of simvastatin pretreatment of VK2E6/E7 vaginal epithelial cells on vaginolysin-mediated cytotoxicity. RESULTS: The mean proportion of G. vaginalis among women taking statins was significantly lower relative to women not using statins. Women using statins had higher mean proportions of Lactobacillus crispatus relative to women with normal cholesterol levels, and higher levels of Lactobacillus jensenii relative to women with high cholesterol but not taking statins. In vitro, vaginal epithelial cells pretreated with simvastatin were relatively resistant to vaginolysin and this effect was inhibited by cholesterol. CONCLUSIONS: In this cross-sectional study, statin use was associated with reduced proportions of G. vaginalis and greater proportions of beneficial lactobacilli within the vaginal microbiome. The negative association between statin use and G. vaginalis may be related to inhibition of vaginolysin function.


Asunto(s)
Proteínas Bacterianas/fisiología , Supervivencia Celular/fisiología , Gardnerella vaginalis/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Microbiota/efectos de los fármacos , Simvastatina/farmacología , Vagina/microbiología , Toxinas Bacterianas , Recuento de Colonia Microbiana , Células Epiteliales/metabolismo , Femenino , Gardnerella vaginalis/aislamiento & purificación , Humanos , Microbiota/genética , Persona de Mediana Edad , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...