Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1304849, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38362451

RESUMEN

The diversity of flower colours in nature provides quantifiable evidence for how visitations by colour sensing insect pollinators can drive the evolution of angiosperm visual signalling. Recent research shows that both biotic and abiotic factors may influence flower signalling, and that harsher climate conditions may also promote salient signalling to entice scarcer pollinators to visit. In parallel, a more sophisticated appreciation of the visual task foragers face reveals that bees have a complex visual system that uses achromatic vision when moving fast, whilst colour vision requires slower, more careful inspection of targets. Spectra of 714 native flowering species across Taiwan from sea level to mountainous regions 3,300 m above sea level (a.s.l.) were measured. We modelled how the visual system of key bee pollinators process signals, including flower size. By using phylogenetically informed analyses, we observed that at lower altitudes including foothills and submontane landscapes, there is a significant relationship between colour contrast and achromatic signals. Overall, the frequency of flowers with high colour contrast increases with altitude, whilst flower size decreases. The evidence that flower colour signaling becomes increasingly salient in higher altitude conditions supports that abiotic factors influence pollinator foraging in a way that directly influences how flowering plants need to advertise.

2.
Proc Biol Sci ; 290(2013): 20232018, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38113941

RESUMEN

Understanding the origins of flower colour signalling to pollinators is fundamental to evolutionary biology and ecology. Flower colour evolves under pressure from visual systems of pollinators, like birds and insects, to establish global signatures among flowers with similar pollinators. However, an understanding of the ancient origins of this relationship remains elusive. Here, we employ computer simulations to generate artificial flower backgrounds assembled from real material sample spectra of rocks, leaves and dead plant materials, against which to test flowers' visibility to birds and bees. Our results indicate how flower colours differ from their backgrounds in strength, and the distributions of salient reflectance features when perceived by these key pollinators, to reveal the possible origins of their colours. Since Hymenopteran visual perception evolved before flowers, the terrestrial chromatic context for its evolution to facilitate flight and orientation consisted of rocks, leaves, sticks and bark. Flowers exploited these pre-evolved visual capacities of their visitors, in response evolving chromatic features to signal to bees, and differently to birds, against a backdrop of other natural materials. Consequently, it appears that today's flower colours may be an evolutionary response to the vision of diurnal pollinators navigating their world millennia prior to the first flowers.


Asunto(s)
Flores , Polinización , Abejas , Animales , Polinización/fisiología , Color , Flores/fisiología , Plantas , Aves/fisiología , Insectos
3.
Am J Bot ; 110(1): e16098, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36371789

RESUMEN

PREMISE: Capparis spinosa is a widespread charismatic plant, in which the nocturnal floral habit contrasts with the high visitation by diurnal bees and the pronounced scarcity of hawkmoths. To resolve this discrepancy and elucidate floral evolution of C. spinosa, we analyzed the intrafloral patterns of visual and olfactory cues in relation to the known sensory biases of the different visitor guilds (bees, butterflies, and hawkmoths). METHODS: We measured the intrafloral variation of scent, reflectance spectra, and colorimetric properties according to three guilds of known visitors of C. spinosa. Additionally, we sampled visitation rates using a motion-activated camera. RESULTS: Carpenter bees visited the flowers eight times more frequently than nocturnal hawkmoths, at dusk and in the following morning. Yet, the floral headspace of C. spinosa contained a typical sphingophilous scent with high emission rates of certain monoterpenes and amino-acid derived compounds. Visual cues included a special case of multisensory nectar guide and color patterns conspicuous to the visual systems of both hawkmoths and bees. CONCLUSIONS: The intrafloral patterns of sensory stimuli suggest that hawkmoths have exerted strong historical selection on C. spinosa. Our study revealed two interesting paradoxes: (a) the flowers phenotypically biased towards the more inconsistent pollinator; and (b) floral display demands an abundance of resources that seems maladaptive in the habitats of C. spinosa. The transition to a binary pollination system accommodating large bees has not required phenotypic changes, owing to specific eco-physiological adaptations, unrelated to pollination, which make this plant an unusual case in pollination ecology.


Asunto(s)
Mariposas Diurnas , Capparis , Abejas , Animales , Odorantes , Néctar de las Plantas , Polinización/fisiología , Flores/fisiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-36269403

RESUMEN

Bees play a vital role as pollinators worldwide and have influenced how flower colour signals have evolved. The Western honey bee, Apis mellifera (Apini), and the Buff-tailed bumble bee, Bombus terrestris (Bombini) are well-studied model species with regard to their sensory physiology and pollination capacity, although currently far less is known about stingless bees (Meliponini) that are common in pantropical regions. We conducted comparative experiments with two highly eusocial bee species, the Western honey bee, A. mellifera, and the Australian stingless bee, Tetragonula carbonaria, to understand their colour preferences considering fine-scaled stimuli specifically designed for testing bee colour vision. We employed stimuli made of pigment powders to allow manipulation of single colour parameters including spectral purity (saturation) or colour intensity (brightness) of a blue colour (hue) for which both species have previously shown innate preferences. Both A. mellifera and T. carbonaria demonstrated a significant preference for spectrally purer colour stimuli, although this preference is more pronounced in honey bees than in stingless bees. When all other colour cues were tightly controlled, honey bees receiving absolute conditioning demonstrated a capacity to learn a high-intensity stimulus significant from chance expectation demonstrating some capacity of plasticity for this dimension of colour perception. However, honey bees failed to learn low-intensity stimuli, and T. carbonaria was insensitive to stimulus intensity as a cue. These comparative findings suggest that there may be some common roots underpinning colour perception in bee pollinators and how they interact with flowers, although species-specific differences do exist.


Asunto(s)
Visión de Colores , Polinización , Abejas , Animales , Australia , Flores , Percepción de Color
5.
PLoS One ; 17(8): e0262559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36006955

RESUMEN

Humans have associations between numbers and physical space on both horizontal and vertical dimensions, called Spatial-Numerical Associations (SNAs). Several studies have considered the hypothesis of there being a dominant orientation by examining on which dimension people are more accurate and efficient at responding during various directional SNA tasks. However, these studies have difficulty differentiating between a person's efficiency at accessing mental representations of numbers in space, and the efficiency at which they exercise motor control functions, particularly bilateral ones, when manifesting a response during an explicit directional SNA task. In this study we use a conflict test employing combined explicit magnitude and spatial directional processing in which pairs of numbers are placed along the diagonal axes and response accuracy/efficiency are considered across the horizontal and vertical dimensions simultaneously. Participants indicated which number in each pair was largest using a joystick that only required unilateral input. The experiment was run in English using Arabic numerals. Results showed that directional SNAs have a vertical rather than horizontal dominance. A moderating factor was also found during post-hoc analysis, where response efficiency, but not accuracy, is conditional on a person's native language being oriented the same as the language of the experiment, left to right. The dominance of the vertical orientation suggests adopting more vertical display formats for numbers may provide situational advantages, particularly for explicit magnitude comparisons, with some domains like flight controls and the stock market already using these in some cases.


Asunto(s)
Percepción Espacial , Procesamiento Espacial , Humanos , Tiempo de Reacción/fisiología , Percepción Espacial/fisiología , Dimensión Vertical
6.
Science ; 376(6592): 456-457, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35482878

RESUMEN

As in mammals, honey bee motivation for wanting rewards is modulated by dopamine.


Asunto(s)
Alérgenos , Recompensa , Animales , Abejas , Dopamina , Mamíferos , Motivación
7.
New Phytol ; 233(1): 52-61, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34460949

RESUMEN

Plant-pollinator interactions provide a natural experiment in signal evolution. Flowers are known to have evolved colour signals that maximise their ease of detection by the visual systems of important pollinators such as bees. Whilst most angiosperms are bee pollinated, our understanding on how the second largest group of pollinating insects, flies, may influence flower colour evolution is limited to the use of categorical models of colour discrimination that do not reflect the small colour differences commonly observed between and within flower species. Here we show by comparing flower signals that occur in different environments including total absence of bees, a mixture of bee and fly pollination within one plant family (Orchidaceae) from a single community, and typical flowers from a broad taxonomic sampling of the same geographic region, that perceptually different colours, empirically measured, do evolve in response to different types of insect pollinators. We show evidence of both convergence among fly-pollinated floral colours but also of divergence and displacement of colour signals in the absence of bee pollinators. Our findings give an insight into how both ecological and agricultural systems may be affected by changes in pollinator distributions around the world.


Asunto(s)
Dípteros , Orchidaceae , Animales , Abejas , Color , Flores , Polinización
9.
Artículo en Inglés | MEDLINE | ID: mdl-34241711

RESUMEN

Colour signalling by flowers appears to be the main plant-pollinator communication system observed across many diverse species and locations worldwide. Bees are considered one of the most important insect pollinators; however, native non-eusocial bees are often understudied compared to managed eusocial species, such as honeybees and bumblebees. Here, we tested two species of native Australian non-eusocial halictid bees on their colour preferences for seven different broadband colours with bee-colour-space dominant wavelengths ranging from 385 to 560 nm and a neutral grey control. Lasioglossum (Chilalictus) lanarium demonstrated preferences for a UV-absorbing white (455 nm) and a yellow (560 nm) stimulus. Lasioglossum (Parasphecodes) sp. showed no colour preferences. Subsequent analyses showed that green contrast and spectral purity had a significant positive relationship with the number of visits by L. lanarium to stimuli. Colour preferences were consistent with other bee species and may be phylogenetically conserved and linked to how trichromatic bees processes visual information, although the relative dearth of empirical evidence on different bee species currently makes it difficult to dissect mechanisms. Past studies and our current results suggest that both innate and environmental factors might both be at play in mediating bee colour preferences.


Asunto(s)
Abejas/fisiología , Percepción de Color/fisiología , Psicofísica , Animales , Australia , Conducta de Elección , Color , Flores , Estimulación Luminosa , Polinización , Especificidad de la Especie , Rayos Ultravioleta
11.
Artículo en Inglés | MEDLINE | ID: mdl-33970340

RESUMEN

The work of the Nobel Laureate Karl von Frisch, the founder of this journal, was seminal in many ways. He established the honeybee as a key animal model for experimental behavioural studies on sensory perception, learning and memory, and first correctly interpreted its famous dance communication. Here, we report on a previously unknown letter by the Physicist and Nobel Laureate Albert Einstein that was written in October 1949. It briefly addresses the work of von Frisch and also queries how understanding animal perception and navigation may lead to innovations in physics. We discuss records proving that Einstein and von Frisch met in April 1949 when von Frisch visited the USA to present a lecture on bees at Princeton University. In the historical context of Einstein's theories and thought experiments, we discuss some more recent discoveries of animal sensory capabilities alien to us humans and potentially valuable for bio-inspired design improvements. We also address the orientation of animals like migratory birds mentioned by Einstein 70 years ago, which pushes the boundaries of our understanding nature, both its biology and physics.


Asunto(s)
Abejas , Conducta Animal , Correspondencia como Asunto/historia , Animales , Historia del Siglo XX , Humanos
12.
PLoS One ; 16(5): e0251572, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33989329

RESUMEN

Over one third of crops are animal pollinated, with insects being the largest group. In some crops, including strawberries, fruit yield, weight, quality, aesthetics and shelf life increase with insect pollination. Many crops are protected from extreme weather in polytunnels, but the impacts of polytunnels on insects are poorly understood. Polytunnels could reduce pollination services, especially if insects have access issues. Here we examine the distribution and activity of honeybees and non-honeybee wild insects on a commercial fruit farm. We evaluated whether insect distributions are impacted by flower type (strawberry; raspberry; weed), or distance from polytunnel edges. We compared passive pan-trapping and active quadrat observations to establish their suitability for monitoring insect distribution and behaviour on a farm. To understand the relative value of honeybees compared to other insects for strawberry pollination, the primary crop at the site, we enhanced our observations with video data analysed using insect tracking software to document the time spent by insects on flowers. The results show honeybees strongly prefer raspberry and weed flowers over strawberry flowers and that location within the polytunnel impacts insect distributions. Consistent with recent studies, we also show that pan-traps are ineffective to sample honeybee numbers. While the pan-traps and quadrat observations tend to suggest that investment in managed honeybees for strawberry pollination might be ineffective due to consistent low numbers within the crop, the camera data provides contrary evidence. Although honeybees were relatively scarce among strawberry crops, camera data shows they spent more time visiting flowers than other insects. Our results demonstrate that a commercial fruit farm is a complex ecosystem influencing pollinator diversity and abundance through a range of factors. We show that monitoring methods may differ in their valuation of relative contributions of insects to crop pollination.


Asunto(s)
Apicultura , Fragaria/crecimiento & desarrollo , Polinización , Rubus/crecimiento & desarrollo , Animales , Abejas/fisiología , Productos Agrícolas/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Insectos/fisiología
13.
Front Plant Sci ; 12: 599874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33633758

RESUMEN

Caladenia fulva G.W. Carr (Tawny Spider-orchid) is a terrestrial Australian endangered orchid confined to contiguous reserves in open woodland in Victoria, Australia. Natural recruitment is poor and no confirmed pollinator has been observed in the last 30 years. Polymorphic variation in flower color complicates plans for artificial pollination, seed collection and ex situ propagation for augmentation or re-introduction. DNA sequencing showed that there was no distinction among color variants in the nuclear ribosomal internal transcribed spacer (ITS) region and the chloroplast trnT-trnF and matK regions. Also, authentic specimens of both C. fulva and Caladenia reticulata from the reserves clustered along with these variants, suggesting free interbreeding. Artificial cross-pollination in situ and assessment of seed viability further suggested that no fertility barriers existed among color variants. Natural fruit set was 15% of the population and was proportional to numbers of the different flower colors but varied with orchid patch within the population. Color modeling on spectral data suggested that a hymenopteran pollinator could discriminate visually among color variants. The similarity in fruiting success, however, suggests that flower color polymorphism may avoid pollinator habituation to specific non-rewarding flower colors. The retention of large brightly colored flowers suggests that C. fulva has maintained attractiveness to foraging insects rather than evolving to match a scarce unreliable hymenopteran sexual pollinator. These results suggest that C. fulva should be recognized as encompassing plants with these multiple flower colors, and artificial pollination should use all variants to conserve the biodiversity of the extant population.

14.
Curr Biol ; 31(2): R78-R80, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33497636

RESUMEN

A new study finds that human collecting may have driven the evolution of background-matching camouflage in an alpine medicinal plant.


Asunto(s)
Plantas , Humanos
15.
Biol Rev Camb Philos Soc ; 96(2): 526-540, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33164298

RESUMEN

Time is a fundamental dimension of all biological events and it is often assumed that animals have the capacity to track the duration of experienced events (known as interval timing). Animals can potentially use temporal information as a cue during foraging, communication, predator avoidance, or navigation. Interval timing has been traditionally investigated in controlled laboratory conditions but its ecological relevance in natural environments remains unclear. While animals may time events in artificial and highly controlled conditions, they may not necessarily use temporal information in natural environments where they have access to other cues that may have more relevance than temporal information. Herein we critically evaluate the ecological contexts where interval timing has been suggested to provide adaptive value for animals. We further discuss attributes of interval timing that are rarely considered in controlled laboratory studies. Finally, we encourage consideration of ecological relevance when designing future interval-timing studies and propose future directions for such experiments.


Asunto(s)
Señales (Psicología) , Ambiente , Animales , Tiempo
16.
Front Plant Sci ; 11: 601700, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329670

RESUMEN

Studying flower color evolution can be challenging as it may require several different areas of expertise, ranging from botany and ecology through to understanding color sensing of insects and thus how they perceive flower signals. Whilst studies often view plant-pollinator interactions from the plant's perspective, there is growing evidence from psychophysics studies that pollinators have their own complex decision making processes depending on their perception of color, viewing conditions and individual experience. Mimicry of rewarding flowers by orchids is a fascinating system for studying the pollinator decision making process, as rewarding model flowering plants and mimics can be clearly characterized. Here, we focus on a system where the rewardless orchid Eulophia zeyheriana mimics the floral color of Wahlenbergia cuspidata (Campanulaceae) to attract its pollinator species, a halictid bee. Using recently developed psychophysics principles, we explore whether the color perception of an insect observer encountering variable model and mimic flower color signals can help explain why species with non-rewarding flowers can exist in nature. Our approach involves the use of color discrimination functions rather than relying on discrimination thresholds, and the use of statistical distributions to model intraspecific color variations. Results show that whilst an experienced insect observer can frequently make accurate discriminations between mimic and rewarding flowers, intraspecific signal variability leads to overlap in the perceived color, which will frequently confuse an inexperienced pollinator. This new perspective provides an improved way to incorporate pollinator decision making into the complex field of plant-pollinator interactions.

17.
Clocks Sleep ; 2(2): 208-224, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-33089201

RESUMEN

Sleep inertia is a decline in cognition one may experience upon and following awakening. A recent study revealed that an alarm sound perceived as melodic by participants displayed a significant relationship to reports of reductions in perceived sleep inertia. This current research builds on these findings by testing the effect melody and rhythm exhibit on sleep inertia for subjects awakening in their habitual environments. Two test Groups (A and B; N = 10 each) completed an online psychomotor experiment and questionnaire in two separate test sessions immediately following awakening from nocturnal sleep. Both groups responded to a control stimulus in the first session, while in the second session, Group A experienced a melodic treatment, and Group B a rhythmic treatment. The results show that the melodic treatment significantly decreased attentional lapses, false starts, and had a significantly improved psychomotor vigilance test (PVT) performance score than the control. There was no significant result for reaction time or response speed. Additionally, no significant difference was observed for all PVT metrics between the control-rhythmic conditions. The results from this analysis support melodies' potential to counteract symptoms of sleep inertia by the observed increase in participant vigilance following waking from nocturnal sleep.

18.
Clocks Sleep ; 2(4): 416-433, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33118526

RESUMEN

Sleep inertia is a measurable decline in cognition some people experience upon and following awakening. However, a systematic review of the current up to date evidence of audio as a countermeasure has yet to be reported. Thus, to amend this gap in knowledge, the authors conducted this systematic review beginning with searches in three primary databases for studies published between the inception date of each journal and the year 2020. Search terms contained "Sleep Inertia" paired with: "Sound"; "Noise"; "Music"; "Alarm"; "Alarm Tone"; "Alarm Sound"; "Alarm Noise"; "Alarm Music"; "Alarm Clock"; "Fire Alarm", and "Smoke Alarm". From 341 study results, twelve were identified for inclusion against a priori conditions. A structured narrative synthesis approach generated three key auditory stimulus themes-(i) Noise, (ii) Emergency tone sequences; Voice Alarms and Hybrids, and (iii) Music. Across themes, participants have been assessed in two situational categories: emergency, and non-emergency awakenings. The results indicate that for children awakening in emergency conditions, a low pitch alarm or voice warnings appear to be more effective in counteracting the effects of sleep inertia than alarms with higher frequencies. For adults abruptly awakened, there is insufficient evidence to support firm conclusions regarding alarm types and voice signals. Positive results have been found in non-emergency awakenings for musical treatments in adults who preferred popular music, and alarms with melodic qualities. The results observed reflect the potential for sound, voice, and musical treatments to counteract sleep inertia post-awakening, and emphasize the requirements for further research in this domain.

19.
Sci Rep ; 10(1): 10685, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606366

RESUMEN

Plant organs including flowers and leaves typically have a variety of different micro-structures present on the epidermal surface. These structures can produce measurable optical effects with viewing angle including shifts in peak reflectance and intensity; however, these different structures can also modulate hydrophobic properties of the surfaces. For some species optical effects have been proposed to act as signals to enhance pollination interactions, whilst the ability to efficiently shed water provides physiological advantages to plants in terms of gas exchange and reducing infections. Currently, little is known about epidermal surface structure of flowering plants in the Southern Hemisphere, and how micro-surface may be related with either hydrophobicity or visual signalling. We measured four Australian native species and two naturalised species using a combination of techniques including SEM imaging, spectral sampling with a goniometer and contact angle measurements. Spectral data were evaluated in relation to published psychophysics results for important pollinators and reveal that potential visual changes, where present, were unlikely to be perceived by relevant pollinators. Nevertheless, hydrophobicity also did not simply explain petal surfaces as similar structures could in some cases result in very different levels of water repellency.


Asunto(s)
Flores/fisiología , Iridiscencia/fisiología , Magnoliopsida/fisiología , Australia , Interacciones Hidrofóbicas e Hidrofílicas , Pigmentación/fisiología , Polinización/fisiología
20.
J Exp Biol ; 223(Pt 15)2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32611791

RESUMEN

Honey bees (Apis mellifera) are known for their capacity to learn arbitrary relationships between colours, odours and even numbers. However, it is not known whether bees can use temporal signals as cueing stimuli in a similar way during symbolic delayed matching-to-sample tasks. Honey bees potentially process temporal signals during foraging activities, but the extent to which they can use such information is unclear. Here, we investigated whether free-flying honey bees could use either illumination colour or illumination duration as potential context-setting cues to enable their subsequent decisions for a symbolic delayed matching-to-sample task. We found that bees could use the changing colour context of the illumination to complete the subsequent spatial vision task at a level significantly different from chance expectation, but could not use the duration of either a 1 or 3 s light as a cueing stimulus. These findings suggest that bees cannot use temporal information as a cueing stimulus as efficiently as other signals such as colour, and are consistent with previous field observations suggesting a limited interval timing capacity in honey bees.


Asunto(s)
Señales (Psicología) , Aprendizaje , Animales , Abejas , Color , Percepción de Color , Estimulación Luminosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA