Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1212092, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469866

RESUMEN

Introduction: Engineered heart tissues (EHTs) are three-dimensional culture platforms with cardiomyocytes differentiated from human pluripotent stem cells (hPSCs) and were designed for assaying cardiac contractility. For drug development applications, EHTs must have a stable function and provide reproducible results. We investigated these properties with EHTs made with different tissue casting batches and lines of differentiated hPSC-cardiomyocytes and analyzed them at different times after being fabricated. Methods: A video-optical assay was used for measuring EHT contractile outputs, and these results were compared with results from motion traction analysis of beating hPSC-cardiomyocytes cultured as monolayers in two-dimensional cultures. The reproducibility of induced contractile variations was tested using compounds with known mechanistic cardiac effects (isoproterenol, EMD-57033, omecamtiv mecarbil, verapamil, ranolazine, and mavacamten), or known to be clinically cardiotoxic (doxorubicin, sunitinib). These drug-induced variations were characterized at different electrical pacing rates and variations in intracellular calcium transients were also assessed in EHTs. Results: To ensure reproducibility in experiments, we established EHT quality control criteria based on excitation-contraction coupling and contractile sensitivity to extracellular calcium concentration. In summary, a baseline contractile force of 0.2 mN and excitation-contraction coupling of EHTs were used as quality control criteria to select suitable EHTs for analysis. Overall, drug-induced contractile responses were similar between monolayers and EHTs, where a close relationship was observed between contractile output and calcium kinetics. Contractile variations at multiple time points after adding cardiotoxic compounds were also detectable in EHTs. Discussion: Reproducibility of drug-induced effects in EHTs between experiments and relative to published work on these cellular models was generally observed. Future applications for EHTs may require additional mechanistic criteria related to drug effects and cardiac functional outputs to be measured in regard to specific contexts of use.

2.
Front Cell Dev Biol ; 7: 198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620439

RESUMEN

Chronic ER stress occurs when protein misfolding in the Endoplasmic reticulum (ER) lumen remains unresolved despite activation of the unfolded protein response. We have shown that traumatic injury such as a severe burn leads to chronic ER stress in vivo leading to systemic inflammation which can last for more than a year. The mechanisms linking chronic ER stress to systemic inflammatory responses are not clear. Here we show that induction of chronic ER stress leads to the release of known and novel damage-associated molecular patterns (DAMPs). The secreted DAMPs are aggregated and markedly protease resistant. ER stress-derived DAMPs activate dendritic cells (DCs) which are then capable of polarizing naïve T cells. Our findings indicate that induction of chronic ER stress may lead to the release of hyperstable DAMPs into the circulation resulting in persistent systemic inflammation and adverse outcomes.

3.
J Mol Cell Cardiol ; 112: 95-103, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28923351

RESUMEN

Calcium plays an integral role to many cellular processes including contraction, energy metabolism, gene expression, and cell death. The inositol 1, 4, 5-trisphosphate receptor (IP3R) is a calcium channel expressed in cardiac tissue. There are three IP3R isoforms encoded by separate genes. In the heart, the IP3R-2 isoform is reported to being most predominant with regards to expression levels and functional significance. The functional roles of IP3R-1 and IP3R-3 in the heart are essentially unexplored despite measureable expression levels. Here we show that all three IP3Rs isoforms are expressed in both neonatal and adult rat ventricular cardiomyocytes, and in human heart tissue. The three IP3R proteins are expressed throughout the cardiomyocyte sarcoplasmic reticulum. Using isoform specific siRNA, we found that expression of all three IP3R isoforms are required for hypertrophic signaling downstream of endothelin-1 stimulation. Mechanistically, IP3Rs specifically contribute to activation of the hypertrophic program by mediating the positive inotropic effects of endothelin-1 and leading to downstream activation of nuclear factor of activated T-cells. Our findings highlight previously unidentified functions for IP3R isoforms in the heart with specific implications for hypertrophic signaling in animal models and in human disease.


Asunto(s)
Cardiomegalia/metabolismo , Hiperglucemia/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Cardiomegalia/complicaciones , Cardiomegalia/patología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Citosol/efectos de los fármacos , Citosol/metabolismo , Endotelina-1/farmacología , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/patología , Hiperglucemia/patología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/metabolismo , Isoformas de Proteínas/metabolismo , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Cell Calcium ; 61: 44-49, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28073595

RESUMEN

Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis.


Asunto(s)
Apoptosis , Calcio/metabolismo , Calmodulina/metabolismo , Apoptosis/efectos de los fármacos , Calmodulina/genética , Células HeLa , Humanos , Estaurosporina/farmacología , Factores de Tiempo
5.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 907-914, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27884701

RESUMEN

Calcium is a second messenger that regulates almost all cellular functions. In cardiomyocytes, calcium plays an integral role in many functions including muscle contraction, gene expression, and cell death. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of calcium channels that are ubiquitously expressed in all tissues. In the heart, IP3Rs have been associated with regulation of cardiomyocyte function in response to a variety of neurohormonal agonists, including those implicated in cardiac disease. Notably, IP3R activity is thought to be essential for mediating the hypertrophic response to multiple stimuli including endothelin-1 and angiotensin II. In this review, we will explore the functional implications of IP3R activity in the heart in health and disease.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Miocardio/metabolismo , Animales , Cardiomegalia/metabolismo , Humanos
6.
J Biol Chem ; 290(11): 7304-13, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25645916

RESUMEN

The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein.


Asunto(s)
Apoptosis , Proteína BRCA1/metabolismo , Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Señalización del Calcio , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Humanos , Modelos Moleculares , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA