Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 6: 721, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442035

RESUMEN

The high fructan contents in underground organs of Cerrado species, high water solubility, and fast metabolism of these compounds highlight their role as carbon storage and as an adaptive feature in plants under drought. In this study, we showed that anatomical structure, in association with soluble compounds and metabolism of inulin-type fructans were modified in rhizophores of Crysolaena obovata submitted to water suppression and recovery after re-watering. Plants were subjected to daily watering (control), suppression of watering for 22 days (water suppression) and suppression of watering followed by re-watering after 10 days (re-watered). Plants were collected at time 0 and after 3, 7, 10, 12, 17, and 22 days of treatment. In addition to changes in fructan metabolism, high proline content was detected in drought stressed plants, contributing to osmoregulation and recovery after water status reestablishment. Under water suppression, total inulin was reduced from approx. 60 to 40%, mainly due to exohydrolase activity. Concurrently, the activity of fructosyltransferases promoted the production of short chain inulin, which could contribute to the increase in osmotic potential. After re-watering, most parameters analyzed were similar to those of control plants, indicating the resumption of regular metabolism, after water absorption. Inulin sphero-crystals accumulated in parenchymatic cells of the cortex, vascular tissues and pith were reduced under drought and accompanied anatomical changes, starting from day 10. At 22 days of drought, the cortical and vascular tissues were collapsed, and inulin sphero-crystals and inulin content were reduced. The localization of inulin sphero-crystals in vascular tissues of C. obovata, as well as the decrease of total inulin and the increase in oligo:polysaccharide ratio in water stressed plants is consistent with the role of fructans in protecting plants against drought.

2.
Plant Physiol Biochem ; 49(6): 664-70, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21531568

RESUMEN

Vernonia herbacea (Vell.) Rusby, a native species from the Brazilian Cerrado, accumulates about 80% of fructans in the rhizophores, the underground reserve organs. Besides their role as reserve, fructans have been recognized as protective compounds against drought. This physiological function attributed to fructans seems consistent with the wide occurrence of these carbohydrates in the cerrado, a biome that undergoes seasonal drought. The aim of this work was to analyze fructan composition and the activities of the enzymes involved in fructan synthesis, sucrose:sucrose 1-frutosyltransferase (1-SST) and fructan:fructan 1-frutosyltransferase (1-FFT), and depolymerization, fructan 1-exohydrolase (1-FEH) in plants submitted to water suppression. The plants were divided into 3 groups receiving 3 treatments: daily watering (control), water suppression for 23 days (WS) and re-watering after 15 days (RW). Samples were taken at the beginning of the experiment (Time 0) and after 3, 7, 11, 15, 17 and 23 days of water suppression. 1-SST and 1-FFT activities increased at the beginning of the water restriction period, coinciding with a decrease in 1-FEH activity, the onset of the reduction in soil water potential and in leaf water potential. Increases in 1-FEH and invertase activities led to a high yield of reducing sugars at the 23rd day after water suppression, and together with 1-FFT, 1-FEH also seemed to act in the redistribution of fructan molecules after re-watering. The increase in reducing sugars and in the fructo-oligo:fructo-polysaccharide ratio were associated to the maintenance of rhizophore turgor. Considering that WS plants showed changes in fructan metabolism that favored water retention and absorption after re-watering, the occurrence of osmotic adjustment mechanisms is suggested, reinforcing the hypothesis of fructans as protective agents against abiotic stresses, such as drought.


Asunto(s)
Adaptación Fisiológica , Sequías , Fructanos/metabolismo , Estructuras de las Plantas/fisiología , Estrés Fisiológico , Vernonia/metabolismo , Agua/fisiología , Ósmosis , Vernonia/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...