Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 69: 103027, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38184999

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a common chronic liver disease that compromises liver function, for which there is not a specifically approved medicine. Recent research has identified transcription factor NRF2 as a potential therapeutic target. However, current NRF2 activators, designed to inhibit its repressor KEAP1, exhibit unwanted side effects. Alternatively, we previously introduced PHAR, a protein-protein interaction inhibitor of NRF2/ß-TrCP, which induces a mild NRF2 activation and selectively activates NRF2 in the liver, close to normal physiological levels. Herein, we assessed the effect of PHAR in protection against NASH and its progression to fibrosis. We conducted experiments to demonstrate that PHAR effectively activated NRF2 in hepatocytes, Kupffer cells, and stellate cells. Then, we used the STAM mouse model of NASH, based on partial damage of endocrine pancreas and insulin secretion impairment, followed by a high fat diet. Non-invasive analysis using MRI revealed that PHAR protects against liver fat accumulation. Moreover, PHAR attenuated key markers of NASH progression, including liver steatosis, hepatocellular ballooning, inflammation, and fibrosis. Notably, transcriptomic data indicate that PHAR led to upregulation of 3 anti-fibrotic genes (Plg, Serpina1a, and Bmp7) and downregulation of 6 pro-fibrotic (including Acta2 and Col3a1), 11 extracellular matrix remodeling, and 8 inflammatory genes. Overall, our study suggests that the mild activation of NRF2 via the protein-protein interaction inhibitor PHAR holds promise as a strategy for addressing NASH and its progression to liver fibrosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Proteínas con Repetición de beta-Transducina , Fibrosis , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
2.
Trends Pharmacol Sci ; 41(9): 598-610, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32711925

RESUMEN

Acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 is largely the result of a dysregulated host response, followed by damage to alveolar cells and lung fibrosis. Exacerbated proinflammatory cytokines release (cytokine storm) and loss of T lymphocytes (leukopenia) characterize the most aggressive presentation. We propose that a multifaceted anti-inflammatory strategy based on pharmacological activation of nuclear factor erythroid 2 p45-related factor 2 (NRF2) can be deployed against the virus. The strategy provides robust cytoprotection by restoring redox and protein homeostasis, promoting resolution of inflammation, and facilitating repair. NRF2 activators such as sulforaphane and bardoxolone methyl are already in clinical trials. The safety and efficacy information of these modulators in humans, together with their well-documented cytoprotective and anti-inflammatory effects in preclinical models, highlight the potential of this armamentarium for deployment to the battlefield against COVID-19.


Asunto(s)
Antiinflamatorios/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Neumonía Viral/tratamiento farmacológico , COVID-19 , Citoprotección , Granulocitos/efectos de los fármacos , Granulocitos/virología , Homeostasis , Humanos , Oxidación-Reducción , Pandemias
3.
Cell Mol Neurobiol ; 39(3): 331-340, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30830503

RESUMEN

Microglial cells are essential mediators of neuroinflammatory processes involved in several pathologies. Moreover, the chemokine fractalkine (CX3CL1) is essential in the crosstalk between neurons and microglia. However, the exact roles of CX3CL1, CX3CL1 receptor (CX3CR1) and microglia signalling are not fully understood in neuroinflammation. In addition, the findings reported on this subject are controversial. In this work, we investigated whether CX3CL1 induced pro-inflammatory signalling activation through NF-κB pathway. We were able to show that CX3CL1 activates the pro-inflammatory pathway mediated by the transcription factor NF-κB as an early response in microglial cells. On the other side, CX3CR1-deficient microglia showed impaired NF-κB axis. Phospho-kinase assay proteome profiles indicated that CX3CL1 induced several kinases such as MAPK's (ERK and JNK), SRC-family tyrosine kinases (YES, FGR, LCK and LYN) and most interesting and also related to NF-κB, the mitogen- and stress-activated kinase-1 (MSK1). Knockdown of MSK1 with short interfering RNAs decreased partially MSK1 protein levels (about 50%), enough to decrease the mRNA levels of Il-1ß, Tnf-α and iNos triggered by stimulation with CX3CL1. These results indicate the relevance of CX3CL1 in the activation of the pro-inflammatory NF-κB signalling pathway through MSK1 in microglial cells.


Asunto(s)
Quimiocina CX3CL1/farmacología , Microglía/metabolismo , FN-kappa B/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Mediadores de Inflamación/metabolismo , Ratones Noqueados , Microglía/efectos de los fármacos , Modelos Biológicos , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo
4.
Redox Biol ; 22: 101118, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30769286

RESUMEN

TAU protein aggregation is the main characteristic of neurodegenerative diseases known as tauopathies. Low-grade chronic inflammation is also another hallmark that indicates crosstalk between damaged neurons and glial cells. Previously, we have demonstrated that neurons overexpressing TAUP301L release CX3CL1, which activates the transcription factor NRF2 signalling to limit over-activation in microglial cells in vitro and in vivo. However, the connection between CX3CL1/CX3CR1 and NRF2 system and its functional implications in microglia are poorly described. We evaluated CX3CR1/NRF2 axis in the context of tauopathies and its implication in neuroinflammation. Regarding the molecular mechanisms that connect CX3CL1/CX3CR1 and NRF2 systems, we observed that in primary microglia from Cx3cr1-/- mice the mRNA levels of Nrf2 and its related genes were significantly decreased, establishing a direct linking between both systems. To determine functional relevance of CX3CR1, migration and phagocytosis assays were evaluated. CX3CR1-deficient microglia showed impaired cell migration and deficiency of phagocytosis, as previously described for NRF2-deficient microglia, reinforcing the idea of the relevance of the CX3CL1/CX3CR1 axis in these events. The importance of these findings was evident in a tauopathy mouse model where the effects of sulforaphane (SFN), an NRF2 inducer, were examined on neuroinflammation in Cx3cr1+/+ and Cx3cr1-/- mice. Interestingly, the treatment with SFN was able to modulate astrogliosis but failed to reduce microgliosis in Cx3cr1-/- mice. These findings suggest an essential role of the CX3CR1/NRF2 axis in microglial function and in tauopathies. Therefore, polymorphisms with loss of function in CX3CR1 or NRF2 have to be taken into account for the development of therapeutic strategies.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/deficiencia , Microglía/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Animales , Línea Celular , Movimiento Celular/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Microglía/inmunología , Fagocitosis/genética , Fagocitosis/inmunología , Células Piramidales/metabolismo , Células Piramidales/patología , ARN Mensajero/genética , Tauopatías/etiología , Tauopatías/metabolismo , Tauopatías/mortalidad , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Redox Biol ; 18: 173-180, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30029164

RESUMEN

Chronic neuroinflammation is a hallmark of the onset and progression of brain proteinopathies such as Alzheimer disease (AD) and it is suspected to participate in the neurodegenerative process. Transcription factor NRF2, a master regulator of redox homeostasis, controls acute inflammation but its relevance in low-grade chronic inflammation of AD is inconclusive due to lack of good mouse models. We have addressed this question in a transgenic mouse that combines amyloidopathy and tauopathy with either wild type (AT-NRF2-WT) or NRF2-deficiency (AT-NRF2-KO). AT-NRF2-WT mice died prematurely, at around 14 months of age, due to motor deficits and a terminal spinal deformity but AT-NRF2-KO mice died roughly 2 months earlier. NRF2-deficiency correlated with exacerbated astrogliosis and microgliosis, as determined by an increase in GFAP, IBA1 and CD11b levels. The immunomodulatory molecule dimethyl fumarate (DMF), a drug already used for the treatment of multiple sclerosis whose main target is accepted to be NRF2, was tested in this preclinical model. Daily oral gavage of DMF during six weeks reduced glial and inflammatory markers and improved cognition and motor complications in the AT-NRF2-WT mice compared with the vehicle-treated animals. This study demonstrates the relevance of the inflammatory response in experimental AD, tightly regulated by NRF2 activity, and provides a new strategy to fight AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/patología , Eliminación de Gen , Inflamación/genética , Factor 2 Relacionado con NF-E2/genética , Tauopatías/genética , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Tauopatías/patología
6.
Glia ; 66(8): 1752-1762, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29624735

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the degeneration of dopaminergic neurons of the substantia nigra and the accumulation of protein aggregates, called Lewy bodies, where the most abundant is alpha-synuclein (α-SYN). Mutations of the gene that codes for α-SYN (SNCA), such as the A53T mutation, and duplications of the gene generate cases of PD with autosomal dominant inheritance. As a result of the association of inflammation with the neurodegeneration of PD, we analyzed whether overexpression of wild-type α-SYN (α-SYNWT ) or mutated α-SYN (α-SYNA53T ) are involved in the neuronal dopaminergic loss and inflammation process, along with the role of the chemokine fractalkine (CX3CL1) and its receptor (CX3CR1). We generated in vivo murine models overexpressing human α-SYNWT or α-SYNA53T in wild type (Cx3cr1+/+ ) or deficient (Cx3cr1-/- ) mice for CX3CR1 using unilateral intracerebral injection of adeno-associated viral vectors. No changes in CX3CL1 levels were observed by immunofluorescence or analysis by qRT-PCR in this model. Interestingly, the expression α-SYNWT induced dopaminergic neuronal death to a similar degree in both genotypes. However, the expression of α-SYNA53T produced an exacerbated neurodegeneration, enhanced in the Cx3cr1-/- mice. This neurodegeneration was accompanied by an increase in neuroinflammation and microgliosis as well as the production of pro-inflammatory markers, which were exacerbated in Cx3cr1-/- mice overexpressing α-SYNA53T . Furthermore, we observed that in primary microglia CX3CR1 was a critical factor in the modulation of microglial dynamics in response to α-SYNWT or α-SYNA53T . Altogether, our study reveals that CX3CR1 plays an essential role in neuroinflammation induced by α-SYNA53T .


Asunto(s)
Quimiocina CX3CL1/deficiencia , Enfermedades Neurodegenerativas/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Quimiocina CX3CL1/genética , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Ratones Noqueados , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/genética , Sustancia Negra/metabolismo
7.
Autophagy ; 12(10): 1902-1916, 2016 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-27427974

RESUMEN

Autophagy is a highly coordinated process that is controlled at several levels including transcriptional regulation. Here, we identify the transcription factor NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) as a regulator of autophagy gene expression and its relevance in a mouse model of Alzheimer disease (AD) that reproduces impaired APP (amyloid ß precursor protein) and human (Hs)MAPT/TAU processing, clearance and aggregation. We screened the chromatin immunoprecipitation database ENCODE for 2 proteins, MAFK and BACH1, that bind the NFE2L2-regulated enhancer antioxidant response element (ARE). Using a script generated from the JASPAR's consensus ARE sequence, we identified 27 putative AREs in 16 autophagy-related genes. Twelve of these sequences were validated as NFE2L2 regulated AREs in 9 autophagy genes by additional ChIP assays and quantitative RT-PCR on human and mouse cells after NFE2L2 activation with sulforaphane. Mouse embryo fibroblasts of nfe2l2-knockout mice exhibited reduced expression of autophagy genes, which was rescued by an NFE2L2 expressing lentivirus, and impaired autophagy flux when exposed to hydrogen peroxide. NFE2L2-deficient mice co-expressing HsAPPV717I and HsMAPTP301L, exhibited more intracellular aggregates of these proteins and reduced neuronal levels of SQSTM1/p62, CALCOCO2/NDP52, ULK1, ATG5 and GABARAPL1. Also, colocalization of HsAPPV717I and HsMAPTP301L with the NFE2L2-regulated autophagy marker SQSTM1/p62 was reduced in the absence of NFE2L2. In AD patients, neurons expressing high levels of APP or MAPT also expressed SQSTM1/p62 and nuclear NFE2L2, suggesting their attempt to degrade intraneuronal aggregates through autophagy. This study shows that NFE2L2 modulates autophagy gene expression and suggests a new strategy to combat proteinopathies.


Asunto(s)
Autofagia/genética , Regulación de la Expresión Génica , Factor 2 Relacionado con NF-E2/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Elementos de Respuesta Antioxidante/genética , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/deficiencia , Neuronas/metabolismo , Neuronas/patología , Regiones Promotoras Genéticas/genética
8.
Antioxid Redox Signal ; 25(2): 61-77, 2016 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-27009601

RESUMEN

AIMS: This preclinical study was aimed at determining whether pharmacological targeting of transcription factor NRF2, a master controller of many homeostatic genes, might provide a disease-modifying therapy in the animal model of Parkinson's disease (PD) that best reproduces the main hallmark of this pathology, that is, α-synucleinopathy, and associated events, including nigral dopaminergic cell death, oxidative stress, and neuroinflammation. RESULTS: Pharmacological activation of NRF2 was achieved at the basal ganglia by repurposing dimethyl fumarate (DMF), a drug already in use for the treatment of multiple sclerosis. Daily oral gavage of DMF protected nigral dopaminergic neurons against α-SYN toxicity and decreased astrocytosis and microgliosis after 1, 3, and 8 weeks from stereotaxic delivery to the ventral midbrain of recombinant adeno-associated viral vector expressing human α-synuclein. This protective effect was not observed in Nrf2-knockout mice. In vitro studies indicated that this neuroprotective effect was correlated with altered regulation of autophagy markers SQTSM1/p62 and LC3 in MN9D, BV2, and IMA 2.1 and with a shift in microglial dynamics toward a less pro-inflammatory and a more wound-healing phenotype. In postmortem samples of PD patients, the cytoprotective proteins associated with NRF2 expression, NQO1 and p62, were partly sequestered in Lewy bodies, suggesting impaired neuroprotective capacity of the NRF2 signature. INNOVATION: These experiments provide a compelling rationale for targeting NRF2 with DMF as a therapeutic strategy to reinforce endogenous brain defense mechanisms against PD-associated synucleinopathy. CONCLUSION: DMF is ready for clinical validation in PD. Antioxid. Redox Signal. 25, 61-77.


Asunto(s)
Dimetilfumarato/farmacología , Reposicionamiento de Medicamentos , Factor 2 Relacionado con NF-E2/agonistas , Enfermedad de Parkinson/metabolismo , Sinucleínas/metabolismo , Animales , Autofagia , Encéfalo/metabolismo , Dimetilfumarato/administración & dosificación , Modelos Animales de Enfermedad , Expresión Génica , Gliosis/genética , Gliosis/metabolismo , Gliosis/patología , Inmunohistoquímica , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sinucleínas/genética
9.
J Immunol ; 181(1): 680-9, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18566435

RESUMEN

Because chronic neuroinflammation is a hallmark of neurodegenerative diseases and compromises neuron viability, it is imperative to discover pharmacologic targets to modulate the activation of immune brain cells, the microglia. In this study, we identify the transcription factor Nrf2, guardian of redox homeostasis, as such target in a model of LPS-induced inflammation in mouse hippocampus. Nrf2 knockout mice were hypersensitive to the neuroinflammation induced by LPS, as determined by an increase in F4/80 mRNA and protein, indicative of an increase in microglial cells, and in the inflammation markers inducible NO synthase, IL-6, and TNF-alpha, compared with the hippocampi of wild-type littermates. The aliphatic isothiocyanate sulforaphane elicited an Nrf2-mediated antioxidant response in the BV2 microglial cell line, determined by flow cytometry of cells incubated with the redox sensitive probe dihydrodichlorofluorescein diacetate, and by the Nrf2-dependent induction of the phase II antioxidant enzyme heme oxygenase-1. Animals treated with sulforaphane displayed a 2-3-fold increase in heme oxygenase-1, a reduced abundance of microglial cells in the hippocampus and an attenuated production of inflammation markers (inducible NO synthase, IL-6, and TNF-alpha) in response to LPS. Considering that release of reactive oxygen species is a property of activated microglia, we propose a model in which late induction of Nrf2 intervenes in the down-regulation of microglia. This study opens the possibility of targeting Nrf2 in brain as a means to modulate neuroinflammation.


Asunto(s)
Encefalitis/metabolismo , Encefalitis/patología , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Línea Celular , Encefalitis/inducido químicamente , Encefalitis/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Isotiocianatos , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/metabolismo , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Sulfóxidos , Tiocianatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...