Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559270

RESUMEN

Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary: The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract: Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.

2.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398299

RESUMEN

Pediatric high-grade gliomas (pHGGs) are diffuse and highly aggressive CNS tumors which remain incurable, with a 5-year overall survival of less than 20%. Within glioma, mutations in the genes encoding the histones H3.1 and H3.3 have been discovered to be age-restricted and specific of pHGGs. This work focuses on the study of pHGGs harboring the H3.3-G34R mutation. H3.3-G34R tumors represent the 9-15% of pHGGs, are restricted to the cerebral hemispheres, and are found predominantly in the adolescent population (median 15.0 years). We have utilized a genetically engineered immunocompetent mouse model for this subtype of pHGG generated via the Sleeping Beauty-transposon system. The analysis of H3.3-G34R genetically engineered brain tumors by RNA-Sequencing and ChIP-Sequencing revealed alterations in the molecular landscape associated to H3.3-G34R expression. In particular, the expression of H3.3-G34R modifies the histone marks deposited at the regulatory elements of genes belonging to the JAK/STAT pathway, leading to an increased activation of this pathway. This histone G34R-mediated epigenetic modifications lead to changes in the tumor immune microenvironment of these tumors, towards an immune-permissive phenotype, making these gliomas susceptible to TK/Flt3L immune-stimulatory gene therapy. The application of this therapeutic approach increased median survival of H3.3-G34R tumor bearing animals, while stimulating the development of anti-tumor immune response and immunological memory. Our data suggests that the proposed immune-mediated gene therapy has potential for clinical translation for the treatment of patients harboring H3.3-G34R high grade gliomas.

3.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36125896

RESUMEN

Pediatric high-grade gliomas (pHGGs) are the leading cause of cancer-related deaths in children in the USA. Sixteen percent of hemispheric pediatric and young adult HGGs encode Gly34Arg/Val substitutions in the histone H3.3 (H3.3-G34R/V). The mechanisms by which H3.3-G34R/V drive malignancy and therapeutic resistance in pHGGs remain unknown. Using a syngeneic, genetically engineered mouse model (GEMM) and human pHGG cells encoding H3.3-G34R, we demonstrate that this mutation led to the downregulation of DNA repair pathways. This resulted in enhanced susceptibility to DNA damage and inhibition of the DNA damage response (DDR). We demonstrate that genetic instability resulting from improper DNA repair in G34R-mutant pHGG led to the accumulation of extrachromosomal DNA, which activated the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway, inducing the release of immune-stimulatory cytokines. We treated H3.3-G34R pHGG-bearing mice with a combination of radiotherapy (RT) and DNA damage response inhibitors (DDRi) (i.e., the blood-brain barrier-permeable PARP inhibitor pamiparib and the cell-cycle checkpoint CHK1/2 inhibitor AZD7762), and these combinations resulted in long-term survival for approximately 50% of the mice. Moreover, the addition of a STING agonist (diABZl) enhanced the therapeutic efficacy of these treatments. Long-term survivors developed immunological memory, preventing pHGG growth upon rechallenge. These results demonstrate that DDRi and STING agonists in combination with RT induced immune-mediated therapeutic efficacy in G34-mutant pHGG.


Asunto(s)
Neoplasias Encefálicas , Citocinas , Reparación del ADN , Glioma , Histonas , Proteínas de la Membrana , Nucleotidiltransferasas , Animales , Niño , Humanos , Ratones , Adulto Joven , Neoplasias Encefálicas/genética , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Glioma/genética , Histonas/genética , Inmunidad , Mutación , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Citocinas/inmunología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
4.
Front Oncol ; 11: 631037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34168976

RESUMEN

High grade gliomas are malignant brain tumors that arise in the central nervous system, in patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation, exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new therapeutic strategies for these malignant brain tumors. Currently, immunotherapies represent an appealing approach to treat malignant gliomas, as the pre-clinical data has been encouraging. However, the translation of the discoveries from the bench to the bedside has not been as successful as with other types of cancer, and no long-lasting clinical benefits have been observed for glioma patients treated with immune-mediated therapies so far. This review aims to discuss our current knowledge about gliomas, their molecular particularities and the impact on the tumor immune microenvironment. Also, we discuss several murine models used to study these therapies pre-clinically and how the model selection can impact the outcomes of the approaches to be tested. Finally, we present different immunotherapy strategies being employed in clinical trials for glioma and the newest developments intended to harness the immune system against these incurable brain tumors.

5.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33332283

RESUMEN

Mutant isocitrate dehydrogenase 1 (IDH1-R132H; mIDH1) is a hallmark of adult gliomas. Lower grade mIDH1 gliomas are classified into 2 molecular subgroups: 1p/19q codeletion/TERT-promoter mutations or inactivating mutations in α-thalassemia/mental retardation syndrome X-linked (ATRX) and TP53. This work focuses on glioma subtypes harboring mIDH1, TP53, and ATRX inactivation. IDH1-R132H is a gain-of-function mutation that converts α-ketoglutarate into 2-hydroxyglutarate (D-2HG). The role of D-2HG within the tumor microenvironment of mIDH1/mATRX/mTP53 gliomas remains unexplored. Inhibition of D-2HG, when used as monotherapy or in combination with radiation and temozolomide (IR/TMZ), led to increased median survival (MS) of mIDH1 glioma-bearing mice. Also, D-2HG inhibition elicited anti-mIDH1 glioma immunological memory. In response to D-2HG inhibition, PD-L1 expression levels on mIDH1-glioma cells increased to similar levels as observed in WT-IDH gliomas. Thus, we combined D-2HG inhibition/IR/TMZ with anti-PDL1 immune checkpoint blockade and observed complete tumor regression in 60% of mIDH1 glioma-bearing mice. This combination strategy reduced T cell exhaustion and favored the generation of memory CD8+ T cells. Our findings demonstrate that metabolic reprogramming elicits anti-mIDH1 glioma immunity, leading to increased MS and immunological memory. Our preclinical data support the testing of IDH-R132H inhibitors in combination with IR/TMZ and anti-PDL1 as targeted therapy for mIDH1/mATRX/mTP53 glioma patients.


Asunto(s)
Reprogramación Celular , Glioma/terapia , Glutaratos/farmacología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/genética , Reprogramación Celular/inmunología , Quimioradioterapia , Mutación con Ganancia de Función , Glioma/genética , Glioma/inmunología , Glioma/patología , Humanos , Memoria Inmunológica/efectos de los fármacos , Memoria Inmunológica/genética , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/inmunología , Ratones , Temozolomida/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/inmunología , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/inmunología
6.
STAR Protoc ; 1(2)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32984853

RESUMEN

Malignant gliomas are the most common and aggressive primary brain tumor in adults, and high mitotic rates are associated with their malignancy. Gliomas were modeled in mice using the Sleeping Beauty system to encode genetic lesions recapitulating the human disease. The presented workflow allows the study of the proliferation of glioma cells in vivo, enabling the identification of different phases of the cell cycle, with the advantage that 5-ethynyl-2'-deoxyuridine staining does not involve denaturation steps and samples do not require histological processing. For complete details on the use and execution of this protocol, please refer to Núñez et al. (2019).


Asunto(s)
Neoplasias Encefálicas/patología , División Celular/fisiología , Citometría de Flujo/métodos , Glioma/patología , Imagen Óptica/métodos , Animales , Encéfalo/citología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Modelos Animales de Enfermedad , Femenino , Glioma/diagnóstico por imagen , Masculino , Ratones
7.
Expert Opin Investig Drugs ; 29(7): 659-684, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32400216

RESUMEN

INTRODUCTION: Gliomas are infiltrating brain tumors associated with high morbidity and mortality. Current standard of care includes radiation, chemotherapy, and surgical resection. Today, survival rates for malignant glioma patients remain dismal and unchanged for decades. The glioma microenvironment is highly immunosuppressive and consequently this has motivated the development of immunotherapies for counteracting this condition, enabling the immune cells within the tumor microenvironment to react against this tumor. AREAS COVERED: The authors discuss immunotherapeutic strategies for glioma in phase-I/II clinical trials and illuminate their mechanisms of action, limitations, and key challenges. They also examine promising approaches under preclinical development. EXPERT OPINION: In the last decade there has been an expansion in immune-mediated anti-cancer therapies. In the glioma field, sophisticated strategies have been successfully implemented in preclinical models. Unfortunately, clinical trials have not yet yielded consistent results for glioma patients. This could be attributed to our limited understanding of the complex immune cell infiltration and its interaction with the tumor cells, the selected time for treatment, the combination with other therapies and the route of administration of the agent. Applying these modalities to treat malignant glioma is challenging, but many new alternatives are emerging to by-pass these hurdles.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioma/terapia , Inmunoterapia/métodos , Animales , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Glioma/inmunología , Glioma/patología , Humanos , Tasa de Supervivencia , Microambiente Tumoral/inmunología
8.
Neuro Oncol ; 22(2): 195-206, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32078691

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is a rare but deadly pediatric brainstem tumor. To date, there is no effective therapy for DIPG. Transcriptomic analyses have revealed DIPGs have a distinct profile from other pediatric high-grade gliomas occurring in the cerebral hemispheres. These unique genomic characteristics coupled with the younger median age group suggest that DIPG has a developmental origin. The most frequent mutation in DIPG is a lysine to methionine (K27M) mutation that occurs on H3F3A and HIST1H3B/C, genes encoding histone variants. The K27M mutation disrupts methylation by polycomb repressive complex 2 on histone H3 at lysine 27, leading to global hypomethylation. Histone 3 lysine 27 trimethylation is an important developmental regulator controlling gene expression. This review discusses the developmental and epigenetic mechanisms driving disease progression in DIPG, as well as the profound therapeutic implications of epigenetic programming.


Asunto(s)
Neoplasias del Tronco Encefálico/genética , Reprogramación Celular/genética , Cromatina/genética , Glioma Pontino Intrínseco Difuso/genética , Epigénesis Genética/genética , Animales , Niño , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Histonas/genética , Humanos , Masculino , Mutación
9.
Expert Opin Biol Ther ; 20(3): 305-317, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31959027

RESUMEN

Introduction: The field of neuro-oncology has experienced significant advances in recent years. More is known now about the molecular and genetic characteristics of glioma than ever before. This knowledge leads to the understanding of glioma biology and pathogenesis, guiding the development of targeted therapeutics and clinical trials. The goal of this review is to describe the state of basic, translational, and clinical research as it pertains to biological and synthetic pharmacotherapy for gliomas.Areas covered: Challenges remain in designing accurate preclinical models and identifying patients that are likely to respond to a particular targeted therapy. Preclinical models for therapeutic assessment are critical to identify the most promising treatment approaches.Expert opinion: Despite promising new therapeutics, there have been no significant breakthroughs in glioma treatment and patient outcomes. Thus, there is an urgent need to better understand the mechanisms of treatment resistance and to design effective clinical trials.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Vacunas contra el Cáncer/uso terapéutico , Terapia Genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/inmunología , Humanos , Inmunoterapia Adoptiva , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/metabolismo , Nanomedicina , Viroterapia Oncolítica
10.
Sci Transl Med ; 11(479)2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760578

RESUMEN

Patients with glioma whose tumors carry a mutation in isocitrate dehydrogenase 1 (IDH1R132H) are younger at diagnosis and live longer. IDH1 mutations co-occur with other molecular lesions, such as 1p/19q codeletion, inactivating mutations in the tumor suppressor protein 53 (TP53) gene, and loss-of-function mutations in alpha thalassemia/mental retardation syndrome X-linked gene (ATRX). All adult low-grade gliomas (LGGs) harboring ATRX loss also express the IDH1R132H mutation. The current molecular classification of LGGs is based, partly, on the distribution of these mutations. We developed a genetically engineered mouse model harboring IDH1R132H, TP53 and ATRX inactivating mutations, and activated NRAS G12V. Previously, we established that ATRX deficiency, in the context of wild-type IDH1, induces genomic instability, impairs nonhomologous end-joining DNA repair, and increases sensitivity to DNA-damaging therapies. In this study, using our mouse model and primary patient-derived glioma cultures with IDH1 mutations, we investigated the function of IDH1R132H in the context of TP53 and ATRX loss. We discovered that IDH1R132H expression in the genetic context of ATRX and TP53 gene inactivation (i) increases median survival in the absence of treatment, (ii) enhances DNA damage response (DDR) via epigenetic up-regulation of the ataxia-telangiectasia-mutated (ATM) signaling pathway, and (iii) elicits tumor radioresistance. Accordingly, pharmacological inhibition of ATM or checkpoint kinases 1 and 2, essential kinases in the DDR, restored the tumors' radiosensitivity. Translation of these findings to patients with IDH1132H glioma harboring TP53 and ATRX loss could improve the therapeutic efficacy of radiotherapy and, consequently, patient survival.


Asunto(s)
Daño del ADN/genética , Epigénesis Genética , Glioma/genética , Isocitrato Deshidrogenasa/genética , Mutación/genética , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Diferenciación Celular , Metilación de ADN/genética , Reparación del ADN/genética , Modelos Animales de Enfermedad , Ontología de Genes , Genoma , Glioma/patología , Histonas/metabolismo , Humanos , Ratones , Oligodendroglía/patología , Tolerancia a Radiación , Transducción de Señal , Análisis de Supervivencia
11.
J Vis Exp ; (143)2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30688315

RESUMEN

Analysis of protein expression in glioma is relevant for several aspects in the study of its pathology. Numerous proteins have been described as biomarkers with applications in diagnosis, prognosis, classification, state of tumor progression, and cell differentiation state. These analyses of biomarkers are also useful to characterize tumor neurospheres (NS) generated from glioma patients and glioma models. Tumor NS provide a valuable in vitro model to assess different features of the tumor from which they are derived and can more accurately mirror glioma biology. Here we describe a detailed method to analyze biomarkers in tumor NS using immunohistochemistry (IHC) on paraffin-embedded tumor NS.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Glioma/inmunología , Inmunohistoquímica/métodos , Adhesión en Parafina/métodos , Animales , Neoplasias Encefálicas/patología , Modelos Animales de Enfermedad , Glioma/patología , Humanos , Ratones , Conformación Molecular , Pronóstico
12.
PLoS One ; 12(12): e0189031, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29211789

RESUMEN

In mammalian cells, de novo glycerolipid synthesis begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferases (GPAT). GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions, and overexpressed in several types of cancers and cancer-derived human cell lines where its expression contributes to the tumor phenotype. Using gene silencing and atomic force microscopy, we studied the correlation between GPAT2 expression and cell surface topography, roughness and membrane permeability in MDA-MB-231 cells. In addition, we analyzed the glycerolipid composition by gas-liquid chromatography. GPAT2 expression altered the arachidonic acid content in glycerolipids, and the lack of GPAT2 seems to be partially compensated by the overexpression of another arachidonic-acid-metabolizing enzyme, AGPAT11. GPAT2 expressing cells exhibited a rougher topography and less membrane damage than GPAT2 silenced cells. Pore-like structures were present only in GPAT2 subexpressing cells, correlating with higher membrane damage evidenced by lactate dehydrogenase release. These GPAT2-induced changes are consistent with its proposed function as a tumor-promoting gene, and might be used as a phenotypic differentiation marker. AFM provides the basis for the identification and quantification of those changes, and demonstrates the utility of this technique in the study of cancer cell biology.


Asunto(s)
Neoplasias de la Mama/patología , Permeabilidad de la Membrana Celular , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Microscopía de Fuerza Atómica/métodos , Neoplasias de la Mama/enzimología , Línea Celular Tumoral , Femenino , Silenciador del Gen , Glicerol-3-Fosfato O-Aciltransferasa/genética , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Biochem J ; 474(18): 3093-3107, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28729426

RESUMEN

Glycerol-3-phosphate acyltransferases (GPATs) catalyze the first and rate-limiting step in the de novo glycerolipid synthesis. The GPAT2 isoform differs from the other isoforms because its expression is restricted to male germ cells and cancer cells. It has been recently reported that GPAT2 expression in mouse testis fluctuates during sexual maturation and that it is regulated by epigenetic mechanisms in combination with vitamin A derivatives. Despite progress made in this field, information about GPAT2 role in the developing male germ cells remains unclear. The aim of the present study was to confirm the hypothesis that GPAT2 is required for the normal physiology of testes and male germ cell maturation. The gene was silenced in vivo by inoculating lentiviral particles carrying the sequence of a short-hairpin RNA targeting Gpat2 mRNA into mouse testis. Histological and gene expression analysis showed impaired spermatogenesis and arrest at the pachytene stage. Defects in reproductive fitness were also observed, and the analysis of apoptosis-related gene expression demonstrated the activation of apoptosis in Gpat2-silenced germ cells. These findings indicate that GPAT2 protein is necessary for the normal development of male gonocytes, and that its absence triggers apoptotic mechanisms, thereby decreasing the number of dividing germ cells.


Asunto(s)
Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Túbulos Seminíferos/metabolismo , Espermatogénesis , Espermatozoides/enzimología , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Glicerol-3-Fosfato O-Aciltransferasa/antagonistas & inhibidores , Glicerol-3-Fosfato O-Aciltransferasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos BALB C , Microscopía Fluorescente , Fase Paquiteno , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Túbulos Seminíferos/citología , Túbulos Seminíferos/crecimiento & desarrollo , Espermatozoides/citología , Espermatozoides/metabolismo
14.
Biochem J ; 471(2): 211-20, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26268560

RESUMEN

Spermatogenesis is a highly regulated process that involves both mitotic and meiotic divisions, as well as cellular differentiation to yield mature spermatozoa from undifferentiated germinal stem cells. Although Gpat2 was originally annotated as encoding a glycerol-3-phosphate acyltransferase by sequence homology to Gpat1, GPAT2 is highly expressed in testis but not in lipogenic tissues and is not up-regulated during adipocyte differentiation. New data show that GPAT2 is required for the synthesis of piRNAs (piwi-interacting RNAs), a group of small RNAs that protect the germ cell genome from retrotransposable elements. In order to understand the relationship between GPAT2 and its role in the testis, we focused on Gpat2 expression during the first wave of mouse spermatogenesis. Gpat2 expression was analysed by qPCR (quantitative real-time PCR), in situ hybridization, immunohistochemistry and Western blotting. Gpat2 mRNA content and protein expression were maximal at 15 dpp (days post-partum) and were restricted to pachytene spermatocytes. To achieve this transient expression, both epigenetic mechanisms and trans-acting factors are involved. In vitro assays showed that Gpat2 expression correlates with DNA demethylation and histone acetylation and that it is up-regulated by retinoic acid. Epigenetic regulation by DNA methylation was confirmed in vivo in germ cells by bisulfite sequencing of the Gpat2 promoter. Consistent with the initiation of meiosis at 11 dpp, methylation decreased dramatically. Thus, Gpat2 is expressed at a specific stage of spermatogenesis, consistent with piRNA synthesis and meiosis I prophase, and its on-off expression pattern responds predominantly to epigenetic modifications.


Asunto(s)
Metilación de ADN/fisiología , Epigénesis Genética/fisiología , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Profase Meiótica I/fisiología , Fase Paquiteno/fisiología , Regiones Promotoras Genéticas/fisiología , Espermatocitos/metabolismo , Espermatogénesis/fisiología , Animales , Glicerol-3-Fosfato O-Aciltransferasa/genética , Masculino , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Espermatocitos/citología
15.
PLoS One ; 9(6): e100896, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24967918

RESUMEN

The de novo synthesis of glycerolipids in mammalian cells begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferase (GPAT). GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions. Because it is aberrantly expressed in multiple myeloma, it has been proposed as a novel cancer testis gene. Using a bioinformatics approach, we found that GPAT2 is highly expressed in melanoma, lung, prostate and breast cancer, and we validated GPAT2 expression at the protein level in breast cancer by immunohistochemistry. In this case GPAT2 expression correlated with a higher histological grade. 5-Aza-2' deoxycytidine treatment of human cells lines induced GPAT2 expression suggesting epigenetic regulation of gene expression. In order to evaluate the contribution of GPAT2 to the tumor phenotype, we silenced its expression in MDA-MB-231 cells. GPAT2 knockdown diminished cell proliferation, anchorage independent growth, migration and tumorigenicity, and increased staurosporine-induced apoptosis. In contrast, GPAT2 over-expression increased cell proliferation rate and resistance to staurosporine-induced apoptosis. To understand the functional role of GPAT2, we performed a co-expression analysis in mouse and human testis and found a significant association with semantic terms involved in cell cycle, DNA integrity maintenance, piRNA biogenesis and epigenetic regulation. Overall, these results indicate the GPAT2 would be directly associated with the control of cell proliferation. In conclusion, we confirm GPAT2 as a cancer testis gene and that its expression contributes to the tumor phenotype of MDA-MB-231 cells.


Asunto(s)
Neoplasias de la Mama/patología , Carcinogénesis/genética , Glicerol-3-Fosfato O-Aciltransferasa/genética , Testículo/metabolismo , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Neoplasias de la Mama/genética , Carcinogénesis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Transformación Celular Neoplásica , Simulación por Computador , Decitabina , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Glicerol-3-Fosfato O-Aciltransferasa/deficiencia , Humanos , Masculino , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA