Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 79(9): 490, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987821

RESUMEN

Selective translation allows to orchestrate the expression of specific proteins in response to different signals through the concerted action of cis-acting elements and RNA-binding proteins (RBPs). Gemin5 is a ubiquitous RBP involved in snRNP assembly. In addition, Gemin5 regulates translation of different mRNAs through apparently opposite mechanisms of action. Here, we investigated the differential function of Gemin5 in translation by identifying at a genome-wide scale the mRNAs associated with polysomes. Among the mRNAs showing Gemin5-dependent enrichment in polysomal fractions, we identified a selective enhancement of specific transcripts. Comparison of the targets previously identified by CLIP methodologies with the polysome-associated transcripts revealed that only a fraction of the targets was enriched in polysomes. Two different subsets of these mRNAs carry unique cis-acting regulatory elements, the 5' terminal oligopyrimidine tracts (5'TOP) and the histone stem-loop (hSL) structure at the 3' end, respectively, encoding ribosomal proteins and histones. RNA-immunoprecipitation (RIP) showed that ribosomal and histone mRNAs coprecipitate with Gemin5. Furthermore, disruption of the TOP motif impaired Gemin5-RNA interaction, and functional analysis showed that Gemin5 stimulates translation of mRNA reporters bearing an intact TOP motif. Likewise, Gemin5 enhanced hSL-dependent mRNA translation. Thus, Gemin5  promotes polysome association of only a subset of its targets, and as a consequence, it favors translation of the ribosomal and the histone mRNAs. Together, the results presented here unveil Gemin5 as a novel translation regulator of mRNA subsets encoding proteins involved in fundamental cellular processes.


Asunto(s)
Histonas , ARN , Histonas/genética , Histonas/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN/metabolismo , ARN Mensajero/metabolismo
3.
J Mol Biol ; 434(7): 167501, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35183559

RESUMEN

Hepatitis C virus (HCV) core is a highly conserved and multifunctional protein that forms the viral capsid, making it an attractive target for HCV detection and inhibition. Aptamers are in vitro selected, single-stranded nucleic acids (RNA or ssDNA) with growing applicability in viral diagnostics and therapy. We have carried out DNA and RNA in vitro selection against six different variants of HCV core protein: two versions of the full-length protein of genotype 1, and the hydrophilic domain of genotypes 1 to 4. The aptamer populations obtained were analyzed by means of Ultra-Deep Sequencing (UDS), the most abundant sequences were identified and a number of highly represented sequence motifs were unveiled. Affinity (measured as the dissociation constant, Kd) of the most abundant DNA and RNA aptamers were quantified using Enzyme-Linked OligoNucleotide Assay (ELONA)-based methods. Some aptamers with nanomolar or subnanomolar Kd values (as low as 0.4 nM) were the common outcome of DNA and RNA selections against different HCV core variants. They were tested in sandwich and competitive biosensor assays, reaching a limit of detection for HCV core of 2 pM. Additionally, the two most prevalent and high affinity aptamers were assayed in Huh-7.5 reporter cell lines infected with HCV, where they decreased both the viral progeny titer and the extracellular viral RNA level, while increasing the amount of intracellular viral RNA. Our results suggest that these aptamers inhibit HCV capsid assembly and virion formation, thus making them good candidate molecules for the design of novel therapeutic approaches for hepatitis C.


Asunto(s)
Aptámeros de Nucleótidos , Hepacivirus , Hepatitis C , Técnica SELEX de Producción de Aptámeros , Proteínas del Núcleo Viral , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Cápside , Técnicas de Cultivo de Célula , ADN/química , ADN/genética , Genotipo , Hepacivirus/genética , Hepacivirus/aislamiento & purificación , Hepacivirus/fisiología , Hepatitis C/diagnóstico , Humanos , ARN/química , ARN/genética , Técnica SELEX de Producción de Aptámeros/métodos , Proteínas del Núcleo Viral/análisis , Proteínas del Núcleo Viral/genética , Ensamble de Virus
5.
Phys Life Rev ; 38: 55-106, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34088608

RESUMEN

Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves with a critical and constructive attitude into our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.


Asunto(s)
Genotipo , Fenotipo
6.
Nucleic Acids Res ; 49(9): 4934-4943, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33956139

RESUMEN

Novel tools for in silico design of RNA constructs such as riboregulators are required in order to reduce time and cost to production for the development of diagnostic and therapeutic advances. Here, we present MoiRNAiFold, a versatile and user-friendly tool for de novo synthetic RNA design. MoiRNAiFold is based on Constraint Programming and it includes novel variable types, heuristics and restart strategies for Large Neighborhood Search. Moreover, this software can handle dozens of design constraints and quality measures and improves features for RNA regulation control of gene expression, such as Translation Efficiency calculation. We demonstrate that MoiRNAiFold outperforms any previous software in benchmarking structural RNA puzzles from EteRNA. Importantly, with regard to biologically relevant RNA designs, we focus on RNA riboregulators, demonstrating that the designed RNA sequences are functional both in vitro and in vivo. Overall, we have generated a powerful tool for de novo complex RNA design that we make freely available as a web server (https://moiraibiodesign.com/design/).


Asunto(s)
ARN/química , Programas Informáticos , Secuencia de Bases , Simulación por Computador , Regulación de la Expresión Génica , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Biología Sintética/métodos
7.
Biol Methods Protoc ; 5(1): bpaa025, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33376807

RESUMEN

The environmental fate of many functional molecules that are produced on a large scale as precursors or as additives to specialty goods (plastics, fibers, construction materials, etc.), let alone those synthesized by the pharmaceutical industry, is generally unknown. Assessing their environmental fate is crucial when taking decisions on the manufacturing, handling, usage, and release of these substances, as is the evaluation of their toxicity in humans and other higher organisms. While this data are often hard to come by, the experimental data already available on the biodegradability and toxicity of many unusual compounds (including genuinely xenobiotic molecules) make it possible to develop machine learning systems to predict these features. As such, we have created a predictor of the "risk" associated with the use and release of any chemical. This new system merges computational methods to predict biodegradability with others that assess biological toxicity. The combined platform, named BiodegPred (https://sysbiol.cnb.csic.es/BiodegPred/), provides an informed prognosis of the chance a given molecule can eventually be catabolized in the biosphere, as well as of its eventual toxicity, all available through a simple web interface. While the platform described does not give much information about specific degradation kinetics or particular biodegradation pathways, BiodegPred has been instrumental in anticipating the probable behavior of a large number of new molecules (e.g. antiviral compounds) for which no biodegradation data previously existed.

8.
BMC Bioinformatics ; 17(1): 530, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27964762

RESUMEN

BACKGROUND: Retroviruses transcribe messenger RNA for the overlapping Gag and Gag-Pol polyproteins, by using a programmed -1 ribosomal frameshift which requires a slippery sequence and an immediate downstream stem-loop secondary structure, together called frameshift stimulating signal (FSS). It follows that the molecular evolution of this genomic region of HIV-1 is highly constrained, since the retroviral genome must contain a slippery sequence (sequence constraint), code appropriate peptides in reading frames 0 and 1 (coding requirements), and form a thermodynamically stable stem-loop secondary structure (structure requirement). RESULTS: We describe a unique computational tool, RNAsampleCDS, designed to compute the number of RNA sequences that code two (or more) peptides p,q in overlapping reading frames, that are identical (or have BLOSUM/PAM similarity that exceeds a user-specified value) to the input peptides p,q. RNAsampleCDS then samples a user-specified number of messenger RNAs that code such peptides; alternatively, RNAsampleCDS can exactly compute the position-specific scoring matrix and codon usage bias for all such RNA sequences. Our software allows the user to stipulate overlapping coding requirements for all 6 possible reading frames simultaneously, even allowing IUPAC constraints on RNA sequences and fixing GC-content. We generalize the notion of codon preference index (CPI) to overlapping reading frames, and use RNAsampleCDS to generate control sequences required in the computation of CPI. Moreover, by applying RNAsampleCDS, we are able to quantify the extent to which the overlapping coding requirement in HIV-1 [resp. HCV] contribute to the formation of the stem-loop [resp. double stem-loop] secondary structure known as the frameshift stimulating signal. Using our software, we confirm that certain experimentally determined deleterious HCV mutations occur in positions for which our software RNAsampleCDS and RNAiFold both indicate a single possible nucleotide. We generalize the notion of codon preference index (CPI) to overlapping coding regions, and use RNAsampleCDS to generate control sequences required in the computation of CPI for the Gag-Pol overlapping coding region of HIV-1. These applications show that RNAsampleCDS constitutes a unique tool in the software arsenal now available to evolutionary biologists. CONCLUSION: Source code for the programs and additional data are available at http://bioinformatics.bc.edu/clotelab/RNAsampleCDS/ .


Asunto(s)
Codón/genética , Biología Computacional/métodos , VIH-1/genética , Sistemas de Lectura Abierta , ARN Viral/genética , Secuencia de Bases , Codón/metabolismo , Biología Computacional/instrumentación , Infecciones por VIH/virología , VIH-1/química , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Posición Específica de Matrices de Puntuación , ARN Viral/química , Sistemas de Lectura , Programas Informáticos
9.
BMC Bioinformatics ; 17(1): 424, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27756204

RESUMEN

BACKGROUND: RNA inverse folding is the problem of finding one or more sequences that fold into a user-specified target structure s 0, i.e. whose minimum free energy secondary structure is identical to the target s 0. Here we consider the ensemble of all RNA sequences that have low free energy with respect to a given target s 0. RESULTS: We introduce the program RNAdualPF, which computes the dual partition function Z ∗, defined as the sum of Boltzmann factors exp(-E(a,s 0)/RT) of all RNA nucleotide sequences a compatible with target structure s 0. Using RNAdualPF, we efficiently sample RNA sequences that approximately fold into s 0, where additionally the user can specify IUPAC sequence constraints at certain positions, and whether to include dangles (energy terms for stacked, single-stranded nucleotides). Moreover, since we also compute the dual partition function Z ∗(k) over all sequences having GC-content k, the user can require that all sampled sequences have a precise, specified GC-content. Using Z ∗, we compute the dual expected energy 〈E ∗〉, and use it to show that natural RNAs from the Rfam 12.0 database have higher minimum free energy than expected, thus suggesting that functional RNAs are under evolutionary pressure to be only marginally thermodynamically stable. We show that C. elegans precursor microRNA (pre-miRNA) is significantly non-robust with respect to mutations, by comparing the robustness of each wild type pre-miRNA sequence with 2000 [resp. 500] sequences of the same GC-content generated by RNAdualPF, which approximately [resp. exactly] fold into the wild type target structure. We confirm and strengthen earlier findings that precursor microRNAs and bacterial small noncoding RNAs display plasticity, a measure of structural diversity. CONCLUSION: We describe RNAdualPF, which rapidly computes the dual partition function Z ∗ and samples sequences having low energy with respect to a target structure, allowing sequence constraints and specified GC-content. Using different inverse folding software, another group had earlier shown that pre-miRNA is mutationally robust, even controlling for compositional bias. Our opposite conclusion suggests a cautionary note that computationally based insights into molecular evolution may heavily depend on the software used. C/C++-software for RNAdualPF is available at http://bioinformatics.bc.edu/clotelab/RNAdualPF .


Asunto(s)
Caenorhabditis elegans/genética , Biología Computacional/métodos , Escherichia coli/genética , Evolución Molecular , MicroARNs/genética , ARN Nuclear Pequeño/genética , Programas Informáticos , Algoritmos , Animales , Bases de Datos Factuales , ARN/química , Pliegue del ARN , Análisis de Secuencia de ARN/métodos
10.
Bioinformatics ; 32(12): i360-i368, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27307638

RESUMEN

MOTIVATION: RNA thermometers (RNATs) are cis-regulatory elements that change secondary structure upon temperature shift. Often involved in the regulation of heat shock, cold shock and virulence genes, RNATs constitute an interesting potential resource in synthetic biology, where engineered RNATs could prove to be useful tools in biosensors and conditional gene regulation. RESULTS: Solving the 2-temperature inverse folding problem is critical for RNAT engineering. Here we introduce RNAiFold2T, the first Constraint Programming (CP) and Large Neighborhood Search (LNS) algorithms to solve this problem. Benchmarking tests of RNAiFold2T against existent programs (adaptive walk and genetic algorithm) inverse folding show that our software generates two orders of magnitude more solutions, thus allowing ample exploration of the space of solutions. Subsequently, solutions can be prioritized by computing various measures, including probability of target structure in the ensemble, melting temperature, etc. Using this strategy, we rationally designed two thermosensor internal ribosome entry site (thermo-IRES) elements, whose normalized cap-independent translation efficiency is approximately 50% greater at 42 °C than 30 °C, when tested in reticulocyte lysates. Translation efficiency is lower than that of the wild-type IRES element, which on the other hand is fully resistant to temperature shift-up. This appears to be the first purely computational design of functional RNA thermoswitches, and certainly the first purely computational design of functional thermo-IRES elements. AVAILABILITY: RNAiFold2T is publicly available as part of the new release RNAiFold3.0 at https://github.com/clotelab/RNAiFold and http://bioinformatics.bc.edu/clotelab/RNAiFold, which latter has a web server as well. The software is written in C ++ and uses OR-Tools CP search engine. CONTACT: clote@bc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Pliegue del ARN , Algoritmos , Secuencia de Bases , Sitios Internos de Entrada al Ribosoma , Conformación de Ácido Nucleico , ARN , Programas Informáticos
11.
Sci Rep ; 6: 24243, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27053355

RESUMEN

The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.


Asunto(s)
Sitios Internos de Entrada al Ribosoma/genética , Motivos de Nucleótidos/genética , Picornaviridae/genética , ARN Viral/genética , Secuencia de Bases , Modelos Moleculares , Conformación de Ácido Nucleico , Filogenia , Biosíntesis de Proteínas/genética , Pirimidinas/química , Pirimidinas/metabolismo , ARN Viral/síntesis química , ARN Viral/clasificación , Homología de Secuencia de Ácido Nucleico
12.
PLoS One ; 10(11): e0137859, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26555444

RESUMEN

Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http://bioinformatics.bc.edu/clotelab/RNAentropy, including source code and ancillary programs.


Asunto(s)
Algoritmos , Entropía , Conformación de Ácido Nucleico , ARN/química , Secuencia de Bases , Alineación de Secuencia , Programas Informáticos , Temperatura
13.
Nucleic Acids Res ; 43(W1): W513-21, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26019176

RESUMEN

UNLABELLED: Several algorithms for RNA inverse folding have been used to design synthetic riboswitches, ribozymes and thermoswitches, whose activity has been experimentally validated. The RNAiFold software is unique among approaches for inverse folding in that (exhaustive) constraint programming is used instead of heuristic methods. For that reason, RNAiFold can generate all sequences that fold into the target structure or determine that there is no solution. RNAiFold 2.0 is a complete overhaul of RNAiFold 1.0, rewritten from the now defunct COMET language to C++. The new code properly extends the capabilities of its predecessor by providing a user-friendly pipeline to design synthetic constructs having the functionality of given Rfam families. In addition, the new software supports amino acid constraints, even for proteins translated in different reading frames from overlapping coding sequences; moreover, structure compatibility/incompatibility constraints have been expanded. With these features, RNAiFold 2.0 allows the user to design single RNA molecules as well as hybridization complexes of two RNA molecules. AVAILABILITY: the web server, source code and linux binaries are publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold2.0.


Asunto(s)
Pliegue del ARN , ARN/química , Programas Informáticos , Algoritmos , Internet , Conformación de Ácido Nucleico , Análisis de Secuencia de Proteína , Análisis de Secuencia de ARN
14.
Nucleic Acids Res ; 42(18): 11752-62, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25209235

RESUMEN

Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis-cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/.


Asunto(s)
ARN Catalítico/química , Algoritmos , Secuencia de Bases , Biología Computacional/métodos , Secuencia de Consenso , División del ARN , Pliegue del ARN , ARN Catalítico/metabolismo , Biología Sintética/métodos
15.
Nucleic Acids Res ; 41(Web Server issue): W465-70, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23700314

RESUMEN

Synthetic biology and nanotechnology are poised to make revolutionary contributions to the 21st century. In this article, we describe a new web server to support in silico RNA molecular design. Given an input target RNA secondary structure, together with optional constraints, such as requiring GC-content to lie within a certain range, requiring the number of strong (GC), weak (AU) and wobble (GU) base pairs to lie in a certain range, the RNAiFold web server determines one or more RNA sequences, whose minimum free-energy secondary structure is the target structure. RNAiFold provides access to two servers: RNA-CPdesign, which applies constraint programming, and RNA-LNSdesign, which applies the large neighborhood search heuristic; hence, it is suitable for larger input structures. Both servers can also solve the RNA inverse hybridization problem, i.e. given a representation of the desired hybridization structure, RNAiFold returns two sequences, whose minimum free-energy hybridization is the input target structure. The web server is publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold, which provides access to two specialized servers: RNA-CPdesign and RNA-LNSdesign. Source code for the underlying algorithms, implemented in COMET and supported on linux, can be downloaded at the server website.


Asunto(s)
Pliegue del ARN , Programas Informáticos , Algoritmos , Composición de Base , Emparejamiento Base , Secuencia de Bases , Simulación por Computador , Internet , ARN/química
16.
J Bioinform Comput Biol ; 11(2): 1350001, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23600819

RESUMEN

Synthetic biology is a rapidly emerging discipline with long-term ramifications that range from single-molecule detection within cells to the creation of synthetic genomes and novel life forms. Truly phenomenal results have been obtained by pioneering groups--for instance, the combinatorial synthesis of genetic networks, genome synthesis using BioBricks, and hybridization chain reaction (HCR), in which stable DNA monomers assemble only upon exposure to a target DNA fragment, biomolecular self-assembly pathways, etc. Such work strongly suggests that nanotechnology and synthetic biology together seem poised to constitute the most transformative development of the 21st century. In this paper, we present a Constraint Programming (CP) approach to solve the RNA inverse folding problem. Given a target RNA secondary structure, we determine an RNA sequence which folds into the target structure; i.e. whose minimum free energy structure is the target structure. Our approach represents a step forward in RNA design--we produce the first complete RNA inverse folding approach which allows for the specification of a wide range of design constraints. We also introduce a Large Neighborhood Search approach which allows us to tackle larger instances at the cost of losing completeness, while retaining the advantages of meeting design constraints (motif, GC-content, etc.). Results demonstrate that our software, RNAiFold, performs as well or better than all state-of-the-art approaches; nevertheless, our approach is unique in terms of completeness, flexibility, and the support of various design constraints. The algorithms presented in this paper are publicly available via the interactive webserver http://bioinformatics.bc.edu/clotelab/RNAiFold; additionally, the source code can be downloaded from that site.


Asunto(s)
Algoritmos , Conformación de Ácido Nucleico , Pliegue del ARN , ARN/química , Biología Computacional , Simulación por Computador , Evolución Molecular , Modelos Moleculares , ARN/genética , Riboswitch , Programas Informáticos , Biología Sintética , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA