Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38710235

RESUMEN

BACKGROUND: LCP1 encodes L-plastin, an actin-bundling protein primarily expressed in hematopoietic cells. In mouse and fish models, LCP1 deficiency has been shown to result in hematologic and immune defects. OBJECTIVE: This study aimed to determine the nature of a human inborn error of immunity resulting from a novel genetic variant of LCP1. METHODS: We performed genetic, protein, and cellular analysis of PBMCs from a kindred with apparent autosomal dominant immune deficiency. We identified a candidate causal mutation in LCP1, which we evaluated by engineering the orthologous mutation in mice and Jurkat cells. RESULTS: A splice-site variant in LCP1 segregated with lymphopenia, neutropenia, and thrombocytopenia. The splicing defect resulted in at least 2 aberrant transcripts, producing an in-frame deletion of 24 nucleotides, and a frameshift deletion of exon 8. Cellular analysis of the kindred revealed a proportionate reduction of T and B cells and a mild expansion of transitional B cells. Similarly, mice carrying the orthologous genetic variant exhibited the same in-frame aberrant transcript, reduced expression Lcp1 and gene dose-dependent leukopenia, mild thrombocytopenia, and lymphopenia, with a significant reduction of T-cell populations. Functional analysis revealed that LCP1c740-1G>A confers a defect in platelet development and function with aberrant spreading on collagen. Immunologic analysis revealed defective actin organization in T cells, reduced migration of PBMCs from patients, splenocytes from mutant mice, and a mutant Jurkat cell line in response to CXCL12; impaired germinal center B-cell expansion after immunization; and reduced cytokinesis during T cell proliferation. CONCLUSIONS: We describe a unique human hematopoietic defect affecting neutrophils, lymphocytes, and platelets arising from partial LCP1 deficiency.

2.
Nucleic Acids Res ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721779

RESUMEN

Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.

3.
Blood ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38603632

RESUMEN

Notch signaling regulates cell-fate decisions in several developmental processes and cell functions. However, a role for Notch in hepatic thrombopoietin (TPO) production remains unclear. We noted thrombocytopenia in mice with hepatic Notch1 deficiency, and so investigated TPO production and other features of platelets in these mice. We found that the liver ultrastructure and hepatocyte function were comparable between control mice and Notch1-deficient mice. However, the Notch1-deficient mice had significantly lower plasma TPO and hepatic TPO mRNA levels, concomitant with lower numbers of platelets and impaired megakaryocyte differentiation and maturation, which were rescued by addition of exogenous TPO. Additionally, JAK2/STAT3 phosphorylation was significantly inhibited in Notch1-deficient hepatocytes, consistent with the RNA-seq analysis. JAK2/STAT3 phosphorylation and TPO production was also impaired in cultured Notch1-deficient hepatocytes after treatment with desialylated platelets. Consistently, hepatocyte-specific Notch1 deletion inhibited JAK2/STAT3 phosphorylation and hepatic TPO production induced by administration of desialylated platelets in vivo. Interestingly, Notch1 deficiency downregulated the expression of HES5 but not HES1. Moreover, desialylated platelets promoted the binding of HES5 to JAK2/STAT3, leading to JAK2/STAT3 phosphorylation and pathway activation in hepatocytes. Hepatocyte Ashwell-Morell receptor (AMR) (asialoglycoprotein receptor 1, ASGR1) physically associates with Notch1 and inhibition of AMR impaired Notch1 signaling activation and hepatic TPO production. Furthermore, blockage of Dll4 on desialylated platelets inhibited hepatocyte Notch1 activation and HES5 expression, JAK2/STAT3 phosphorylation and subsequent TPO production. In conclusion, our study identifies a novel regulatory role of Notch1 in hepatic TPO production, indicating that it might be a target for modulating TPO level.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38221764

RESUMEN

BACKGROUND: Cancer patients have increased morbidity and mortality from COVID-19, but may respond poorly to vaccination. The Evaluation of COVID-19 Vaccination Efficacy and Rare Events in Solid Tumors (EVEREST) study, comparing seropositivity between cancer patients and healthy controls in a low SARS-CoV-2 community-transmission setting, allows determination of vaccine response with minimal interference from infection. METHODS: Solid tumor patients from The Canberra Hospital, Canberra, Australia, and healthy controls who received COVID-19 vaccination between March 2021 and January 2022 were included. Blood samples were collected at baseline, pre-second vaccine dose and at 1, 3 (primary endpoint), and 6 months post-second dose. SARS-CoV-2 anti-spike-RBD (S-RBD) and anti-nucleocapsid IgG antibodies were measured. RESULTS: Ninety-six solid tumor patients and 20 healthy controls were enrolled, with median age 62 years, and 60% were female. Participants received either AZD1222 (65%) or BNT162b2 (35%) COVID-19 vaccines. Seropositivity 3 months post vaccination was 87% (76/87) in patients and 100% (20/20) in controls (p = .12). Seropositivity was observed in 84% of patients on chemotherapy, 80% on immunotherapy, and 96% on targeted therapy (differences not satistically significant). Seropositivity in cancer patients increased from 40% (6/15) after first dose, to 95% (35/37) 1 month after second dose, then dropped to 87% (76/87) 3 months after second dose. CONCLUSION: Most patients and all controls became seropositive after two vaccine doses. Antibody concentrations and seropositivity showed a decrease between 1 and 3 months post vaccination, highlighting need for booster vaccinations. SARS-CoV-2 infection amplifies S-RBD antibody responses; however, cannot be adequately identified using nucleocapsid serology. This underlines the value of our COVID-naïve population in studying vaccine immunogenicity.

7.
Blood ; 143(6): 535-547, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37992231

RESUMEN

ABSTRACT: In humans, ∼0.1% to 0.3% of circulating red blood cells (RBCs) are present as platelet-RBC (P-RBC) complexes, and it is 1% to 2% in mice. Excessive P-RBC complexes are found in diseases that compromise RBC health (eg, sickle cell disease and malaria) and contribute to pathogenesis. However, the physiological role of P-RBC complexes in healthy blood is unknown. As a result of damage accumulated over their lifetime, RBCs nearing senescence exhibit physiological and molecular changes akin to those in platelet-binding RBCs in sickle cell disease and malaria. Therefore, we hypothesized that RBCs nearing senescence are targets for platelet binding and P-RBC formation. Confirming this hypothesis, pulse-chase labeling studies in mice revealed an approximately tenfold increase in P-RBC complexes in the most chronologically aged RBC population compared with younger cells. When reintroduced into mice, these complexes were selectively cleared from the bloodstream (in preference to platelet-free RBC) through the reticuloendothelial system and erythrophagocytes in the spleen. As a corollary, patients without a spleen had higher levels of complexes in their bloodstream. When the platelet supply was artificially reduced in mice, fewer RBC complexes were formed, fewer erythrophagocytes were generated, and more senescent RBCs remained in circulation. Similar imbalances in complex levels and senescent RBC burden were observed in humans with immune thrombocytopenia (ITP). These findings indicate that platelets are important for binding and clearing senescent RBCs, and disruptions in platelet count or complex formation and clearance may negatively affect RBC homeostasis and may contribute to the known risk of thrombosis in ITP and after splenectomy.


Asunto(s)
Anemia de Células Falciformes , Malaria , Trombocitopenia , Humanos , Animales , Ratones , Anciano , Plaquetas/metabolismo , Eritrocitos/metabolismo , Trombocitopenia/metabolismo , Anemia de Células Falciformes/metabolismo
8.
Platelets ; 34(1): 2288213, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38031964

RESUMEN

Platelet-specific collagen receptor glycoprotein (GP)VI is stable on the surface of circulating platelets but undergoes ectodomain cleavage on activated platelets. Activation-dependent GPVI metalloproteolysis is primarily mediated by A Disintegrin And Metalloproteinase (ADAM) 10. Regulation of platelet ADAMs activity is not well-defined however Tissue Inhibitors of Metalloproteinases (TIMPs) may play a role. As levels of TIMPs on platelets and the control of ADAMs-mediated shedding by TIMPs has not been evaluated, we quantified the levels of TIMPs on the surface of resting and activated platelets from healthy donors by flow cytometry and multiplex ELISA. Variable levels of all TIMPs could be detected on platelets. Plasma contained significant quantities of TIMP1 and TIMP2, but only trace amounts of TIMP3 and TIMP4. Recombinant TIMP3 strongly ablated resting and activated platelet ADAM10 activity, when monitored using a quenched fluorogenic peptide substrate with ADAM10 specificity. Whilst ADAM10-specific inhibitor GI254023X or ethylenediamine tetraacetic acid (EDTA) could modulate ligand-initiated shedding of GPVI, only recombinant TIMP2 achieved a modest (~20%) inhibition. We conclude that some platelet TIMPs are able to modulate platelet ADAM10 activity but none strongly regulate ligand-dependent shedding of GPVI. Our findings provide new insights into the regulation of platelet receptor sheddase activity.


What do we know? Platelet receptor GPVI initiates platelet adhesion and aggregation and is proteolytically cleaved from the activated platelet surfaceThe metalloproteinases responsible belong to the ADAMs family of enzymes which are inhibited by TIMPsWhat did we discover? Plasma contains significant amounts of TIMP1 and TIMP2Circulating platelets bear significant amounts of TIMPs 1, 2, and 3Recombinant TIMP3 strongly inhibits resting and activated platelet ADAM10 activityExogenous addition of TIMP2 mildly blocked ligand-initiated shedding of GPVIWhat is the impact? TIMPs may modulate ADAM10 activity under resting conditions and stabilize GPVI levels in response to platelet activationAnti-GPVI agents are being evaluated as anti-thrombotic agents, however, acute loss of GPVI in trauma or settings of thrombocytopenia is linked with clinical bleedingUnderstanding how GPVI levels are regulated is important as agents that modulate GPVI function are emerging as important therapeutics for clinical applications in Thrombosis and Hemostasis fields.


Asunto(s)
Plaquetas , Glicoproteínas de Membrana Plaquetaria , Humanos , Ligandos , Proteína ADAM10/genética , Péptidos/farmacología , Metaloproteasas , Activación Plaquetaria , Proteínas de la Membrana , Secretasas de la Proteína Precursora del Amiloide
9.
Nat Commun ; 14(1): 4829, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563135

RESUMEN

Human MutT Homolog 1 (MTH1) is a nucleotide pool sanitization enzyme that hydrolyzes oxidized nucleotides to prevent their mis-incorporation into DNA under oxidative stress. Expression and functional roles of MTH1 in platelets are not known. Here, we show MTH1 expression in platelets and its deficiency impairs hemostasis and arterial/venous thrombosis in vivo. MTH1 deficiency reduced platelet aggregation, phosphatidylserine exposure and calcium mobilization induced by thrombin but not by collagen-related peptide (CRP) along with decreased mitochondrial ATP production. Thrombin but not CRP induced Ca2+-dependent mitochondria reactive oxygen species generation. Mechanistically, MTH1 deficiency caused mitochondrial DNA oxidative damage and reduced the expression of cytochrome c oxidase 1. Furthermore, MTH1 exerts a similar role in human platelet function. Our study suggests that MTH1 exerts a protective function against oxidative stress in platelets and indicates that MTH1 could be a potential therapeutic target for the prevention of thrombotic diseases.


Asunto(s)
Plaquetas , Trombosis , Humanos , Plaquetas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Trombina/farmacología , Trombina/metabolismo , Estrés Oxidativo , Hemostasis , Nucleótidos/metabolismo , Mitocondrias/metabolismo , Trombosis/genética , Trombosis/prevención & control , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 43(10): 1775-1783, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37615110

RESUMEN

Platelet adhesion and activation is fundamental to the formation of a hemostatic response to limit loss of blood and instigate wound repair to seal a site of vascular injury. The process of platelet aggregate formation is supported by the coagulation system driving injury-proximal formation of thrombin, which converts fibrinogen to insoluble fibrin. This highly coordinated series of molecular and membranous events must be routinely achieved in flowing blood, at vascular fluid shear rates that place significant strain on molecular and cellular interactions. Platelets have long been recognized to be able to slow down and adhere to sites of vascular injury and then activate and recruit more platelets that forge and strengthen adhesive ties with the vascular wall under these conditions. It has been a major challenge for the Platelet Research Community to construct experimental conditions that allow precise definition of the molecular steps occurring under flow. This brief review will discuss work to date from our group, as well as others that has furthered our understanding of platelet function in flowing blood.


Asunto(s)
Hemostáticos , Lesiones del Sistema Vascular , Humanos , Plaquetas/fisiología , Hemostasis , Coagulación Sanguínea , Adhesividad Plaquetaria
11.
bioRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461445

RESUMEN

A common feature in patients with abdominal aortic aneurysms (AAA) is the formation of a nonocclusive intraluminal thrombus (ILT) in regions of aortic dilation. Platelets are known to maintain hemostasis and propagate thrombosis through several redundant activation mechanisms, yet the role of platelet activation in the pathogenesis of AAA associated ILT is still poorly understood. Thus, we sought to investigate how platelet activation impacts the pathogenesis of AAA. Using RNA-sequencing, we identify that the platelet-associated transcripts are significantly enriched in the ILT compared to the adjacent aneurysm wall and healthy control aortas. We found that the platelet specific receptor glycoprotein VI (GPVI) is among the top enriched genes in AAA ILT and is increased on the platelet surface of AAA patients. Examination of a specific indicator of platelet activity, soluble GPVI (sGPVI), in two independent AAA patient cohorts is highly predictive of a AAA diagnosis and associates more strongly with aneurysm growth rate when compared to D-dimer in humans. Finally, intervention with the anti-GPVI antibody (J) in mice with established aneurysms blunted the progression of AAA in two independent mouse models. In conclusion, we show that levels of sGPVI in humans can predict a diagnosis of AAA and AAA growth rate, which may be critical in the identification of high-risk patients. We also identify GPVI as a novel platelet-specific AAA therapeutic target, with minimal risk of adverse bleeding complications, where none currently exist. KEY POINTS: Soluble glycoprotein VI, which is a platelet-derived blood biomarker, predicts a diagnosis of AAA, with high sensitivity and specificity in distinguishing patients with fast from slow-growing AAA.Blockade of glycoprotein VI in mice with established aneurysms reduces AAA progression and mortality, indicating therapeutic potential.

12.
Platelets ; 34(1): 2204619, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37126352

Asunto(s)
Plaquetas , Humanos
13.
Curr Protoc ; 3(5): e765, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37232369

RESUMEN

Accurate measurement of whole blood counts from mice is an essential quantitative tool across the fields of vascular cell biology. In particular, the measurement of platelet counts can be challenging as the process relies upon good phlebotomy technique, the inclusion of a sufficient amount of the appropriate anticoagulant, and very often dilution of the sample to meet the sample volume requirements of an automated analyzer. To minimize sample dilution, blood collection tubes pre-coated with the anticoagulant can be used; however, these are expensive and prone to blood clotting issues. Here, we describe a simple dilution correction method that accurately calculates blood-to-anticoagulant dilutions to generate appropriate volumes for automated blood cell analysis while minimizing blood clotting. We also discuss some simple steps that can be incorporated into blood collection methods to avoid artefacts during blood collection. Blood count data analysis involving volume correction and clot exclusion can significantly reduce variable blood cell count values among healthy untreated littermates. It also detects subtle changes in blood cell counts, mainly of platelets and RBCs in experimental settings, which can be masked in the absence of careful and precise volume correction. Blood count analysis with volume correction precisely determines mouse whole blood cell counts for investigators. The decreased variability in cell count values reduces the number of experimental animals required for meaningful analysis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: An optimized method of collecting murine peripheral blood and dilution correction for accurate blood cell enumeration.


Asunto(s)
Anticoagulantes , Células Sanguíneas , Animales , Ratones , Recuento de Células Sanguíneas , Recuento de Plaquetas/métodos , Eritrocitos
15.
EMBO Rep ; 24(6): e54600, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37073791

RESUMEN

Inflammasome signaling is a central pillar of innate immunity triggering inflammation and cell death in response to microbes and danger signals. Here, we show that two virulence factors from the human bacterial pathogen Clostridium perfringens are nonredundant activators of the NLRP3 inflammasome in mice and humans. C. perfringens lecithinase (also known as phospolipase C) and C. perfringens perfringolysin O induce distinct mechanisms of activation. Lecithinase enters LAMP1+ vesicular structures and induces lysosomal membrane destabilization. Furthermore, lecithinase induces the release of the inflammasome-dependent cytokines IL-1ß and IL-18, and the induction of cell death independently of the pore-forming proteins gasdermin D, MLKL and the cell death effector protein ninjurin-1 or NINJ1. We also show that lecithinase triggers inflammation via the NLRP3 inflammasome in vivo and that pharmacological blockade of NLRP3 using MCC950 partially prevents lecithinase-induced lethality. Together, these findings reveal that lecithinase activates an alternative pathway to induce inflammation during C. perfringens infection and that this mode of action can be similarly exploited for sensing by a single inflammasome.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Clostridium perfringens/metabolismo , Factores de Virulencia , Inflamación , Interleucina-1beta/metabolismo , Factores de Crecimiento Nervioso , Moléculas de Adhesión Celular Neuronal
16.
J Thromb Haemost ; 21(8): 2223-2235, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37001816

RESUMEN

BACKGROUND: A disintegrin and metalloprotease 17 (ADAM17) catalyzes platelet glycoprotein (GP) Ibα ectodomain shedding, thereby releasing glycocalicin in plasma. The spatiotemporal control over the enzyme-substrate interaction and the biological consequences of GPIbα shedding are poorly understood. OBJECTIVES: This study aimed to determine the spatiotemporal control over GPIbα shedding by ADAM17. METHODS: Transmission electron microscopy with immunogold staining, immunoprecipitation, and quantitative western blotting were used. RESULTS: Immunogold staining showed that all ADAM17 antigen is expressed intracellularly, irrespective of platelet activation. ADAM17 clustered in patches on a tortuous membrane system different from α- and dense granules. Mild activation by platelet adhesion to immobilized fibrinogen did not cause GPIbα shedding, whereas strong and sustained stimulation using thrombin and collagen (analogs) did. Glycocalicin release kinetics was considerably slower than typical hemostasis, starting at 20 minutes and reaching a plateau after 3 hours of strong stimulation. Inhibition of the ADAM17 scissile bond specifically in GPIbα receptors that reside on the platelet's extracellular surface did not prevent shedding, which is in line with the strict intracellular location of ADAM17. Instead, shedding was restricted to a large GPIbα subpopulation that is inaccessible on resting platelets but becomes partially accessible following platelet stimulation. Furthermore, the data show that proteinaceous, water-soluble ADAM17 inhibitors cannot inhibit GPIbα shedding, whereas membrane permeable small molecule ADAM inhibitors can. CONCLUSION: The data show that platelets harbor 2 distinct GPIbα subpopulations: one that presents at the platelet's surface known for its role in primary hemostasis and one that provides substrate for proteolysis by ADAM17 with kinetics that suggest a role beyond hemostasis.


Asunto(s)
Plaquetas , Complejo GPIb-IX de Glicoproteína Plaquetaria , Humanos , Plaquetas/metabolismo , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Proteína ADAM17 , Activación Plaquetaria , Metaloproteasas/metabolismo , Proteolisis , Colágeno
17.
J Thromb Haemost ; 21(7): 1703-1713, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36990158

RESUMEN

Platelets play a central role in the arrest of bleeding. The ability of platelets to engage with extracellular matrix proteins of the subendothelium has long been recognized as a pivotal platelet attribute, underpinning adequate hemostasis. The propensity of platelets to rapidly bind and functionally respond to collagen was one of the earliest documented events in platelet biology. The receptor primarily responsible for mediating platelet/collagen responses was identified as glycoprotein (GP) VI and successfully cloned in 1999. Since that time, this receptor has held the attention of many research groups, and through these efforts, we now have an excellent understanding of the roles of GPVI as a platelet- and megakaryocyte-specific adheso-signaling receptor in platelet biology. GPVI is considered a viable antithrombotic target, as data obtained from groups across the world is consistent with GPVI being less involved in physiological hemostatic processes but participating in arterial thrombosis. This review will highlight the key aspects of GPVI contributions to platelet biology and concentrate on the interaction with recently identified ligands, with a focus on fibrin and fibrinogen, discussing the role of these interactions in the growth and stability of thrombi. We will also discuss important therapeutic developments that target GPVI to modulate platelet function while minimizing bleeding outcomes.


Asunto(s)
Fibrina , Activación Plaquetaria , Trombosis , Humanos , Plaquetas/metabolismo , Colágeno/metabolismo , Fibrina/metabolismo , Hemorragia/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Trombosis/metabolismo
18.
Blood Transfus ; 21(4): 289-295, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36346878

RESUMEN

BACKGROUND: Platelet concentrates have a limited shelf life due to room temperature storage and therefore, are not kept in regional centres where turnover is low. Cryopreserved platelets have been proposed as an alternative to platelet transfusion in austere circumstances and fibrinogen concentrate has improved thromboelastometry parameters in thrombocytopenia. This study compared the ability of stored haemostatic products and platelets to correct thromboelastometry parameters in thrombocytopenia. MATERIALS AND METHODS: Blood from eight patients with severe thrombocytopenia was combined with platelet concentrates, cryoprecipitate, fibrinogen concentrate, factor VIII, factor XIII and cryopreserved platelets in ratios equivalent to transfusion. Tissue factor initiated thromboelastometry (EXTEM) was compared between the products. RESULTS: EXTEM amplitude at 20 minutes (A20) improved by 13.1 mm with platelets (p<0.01). The 5mm increase in A20 seen with cryoprecipitate (p=0.06) was not statistically different from platelets (p=0.19). No improvement in A20 was observed with cryopreserved platelets or factor concentrates. EXTEM clotting times (CT) improved with cryopreserved platelets (19.4 s, p=0.001) and cryoprecipitate (24.1 s, p<0.05), but not fibrinogen, and both were superior to platelets (9.9 s, p<0.05). Clotting concentrates did not improve EXTEM parameters although further studies suggested the improvement in A20 was largely driven by higher fibrinogen concentrations in cryoprecipitate. DISCUSSION: These results suggest that cryopreserved platelets enhance clot initiation but do not contribute to clot strength in thrombocytopenia. When platelets are not available for transfusion, cryoprecipitate may be of value, however this requires further clinical studies.


Asunto(s)
Anemia , Hemostáticos , Trombocitopenia , Humanos , Fibrinógeno/uso terapéutico , Hemostasis , Trombocitopenia/terapia , Coagulación Sanguínea , Tromboelastografía/métodos
19.
J Thromb Haemost ; 20(12): 2896-2908, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36107495

RESUMEN

BACKGROUND: Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare complication of adenovirus-based vaccines aimed to prevent and minimize COVID-19 and related pathophysiology. OBJECTIVES: To describe patterns of testing for anti-platelet factor 4 (PF4) antibodies using various ELISA assays in a large Australian cohort and comparative functional platelet activation assays in a subset. PATIENTS/METHODS: Asserachrom HPIA IgG ELISA was performed in 1284 patients over a period of 12 months, supplemented in select cohorts by comparative ELISA using three other methods (n = 78-179), three different functional assays (flow cytometry, serotonin release assay, and/or Multiplate; n = 476), and rapid immunological chemiluminescence anti-PF4 assay (n = 460), in a multicenter study. RESULTS: For first episode presentations, 190/1284 (14.8%) ELISA tests were positive. Conversely, most (445/460; 96.7%) chemiluminescence anti-PF4 test results were negative. All functional assays showed associations of higher median ELISA optical density with functional positivity and with high rates of ELISA positivity (64.0% to 85.2%). Data also identified functional positivity in 14.8%-36.0% of ELISA negative samples, suggesting false negative VITT by HPIA IgG ELISA in upward of one third of assessable cases. CONCLUSION: To our knowledge, this is the largest multicenter evaluation of anti-PF4 testing for investigation of VITT. Discrepancies in test results (ELISA vs. ELISA or ELISA vs. functional assay) in some patients highlighted limitations in relying on single methods (ELISA and functional) for PF4 antibody detection in VITT, and also highlights the variability in phenotypic test presentation and pathomechanism of VITT.


Asunto(s)
COVID-19 , Trombocitopenia , Trombosis , Vacunas , Humanos , Factor Plaquetario 4 , Heparina/efectos adversos , Australia , Trombocitopenia/inducido químicamente , Trombocitopenia/diagnóstico , Trombosis/diagnóstico , Factores Inmunológicos/efectos adversos , Inmunoglobulina G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA