Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 91(2): e0057022, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36692308

RESUMEN

A disrupted "dysbiotic" gut microbiome engenders susceptibility to the diarrheal pathogen Clostridioides difficile by impacting the metabolic milieu of the gut. Diet, in particular the microbiota-accessible carbohydrates (MACs) found in dietary fiber, is one of the most powerful ways to affect the composition and metabolic output of the gut microbiome. As such, diet is a powerful tool for understanding the biology of C. difficile and for developing alternative approaches for coping with this pathogen. One prominent class of metabolites produced by the gut microbiome is short-chain fatty acids (SCFAs), the major metabolic end products of MAC metabolism. SCFAs are known to decrease the fitness of C. difficile in vitro, and high intestinal SCFA concentrations are associated with reduced fitness of C. difficile in animal models of C. difficile infection (CDI). Here, we use controlled dietary conditions (8 diets that differ only by MAC composition) to show that C. difficile fitness is most consistently impacted by butyrate, rather than the other two prominent SCFAs (acetate and propionate), during murine model CDI. We similarly show that butyrate concentrations are lower in fecal samples from humans with CDI than in those from healthy controls. Finally, we demonstrate that butyrate impacts growth in diverse C. difficile isolates. These findings provide a foundation for future work which will dissect how butyrate directly impacts C. difficile fitness and will lead to the development of diverse approaches distinct from antibiotics or fecal transplant, such as dietary interventions, for mitigating CDI in at-risk human populations. IMPORTANCE Clostridioides difficile is a leading cause of infectious diarrhea in humans, and it imposes a tremendous burden on the health care system. Current treatments for C. difficile infection (CDI) include antibiotics and fecal microbiota transplant, which contribute to recurrent CDIs and face major regulatory hurdles, respectively. Therefore, there is an ongoing need to develop new ways to cope with CDI. Notably, a disrupted "dysbiotic" gut microbiota is the primary risk factor for CDI, but we incompletely understand how a healthy microbiota resists CDI. Here, we show that a specific molecule produced by the gut microbiota, butyrate, is negatively associated with C. difficile burdens in humans and in a mouse model of CDI and that butyrate impedes the growth of diverse C. difficile strains in pure culture. These findings help to build a foundation for designing alternative, possibly diet-based, strategies for mitigating CDI in humans.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Humanos , Animales , Ratones , Butiratos , Tolerancia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ácidos Grasos Volátiles
2.
Autophagy ; 19(5): 1551-1561, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36286616

RESUMEN

LC3-dependent EV loading and secretion (LDELS) is a secretory autophagy pathway in which the macroautophagy/autophagy machinery facilitates the packaging of cytosolic cargos, such as RNA-binding proteins, into extracellular vesicles (EVs) for secretion outside of the cell. Here, we identify TFRC (transferrin receptor), one of the first proteins found to be secreted via EVs, as a transmembrane cargo of the LDELS pathway. Similar to other LDELS targets, TFRC secretion via EVs genetically requires components of the MAP1LC3/LC3-conjugation machinery but is independent of other ATGs involved in classical autophagosome formation. Furthermore, the packaging and secretion of this transmembrane protein into EVs depends on multiple ESCRT pathway components and the small GTPase RAB27A. Based on these results, we propose that the LDELS pathway promotes TFRC incorporation into EVs and its secretion outside the cell.Abbreviations: ATG: autophagy related; ESCRT: endosomal sorting complexes required for transport; EV: extracellular vesicle; EVP: extracellular vesicle and particle; ILV: intralumenal vesicle; LDELS: LC3-dependent EV loading and secretion; LIR: LC3-interacting region; MVE: multivesicular endosome; RBP: RNA-binding protein; TMT: tandem mass tag; TFRC: transferrin receptor.


Asunto(s)
Autofagia , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Endosomas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Receptores de Transferrina/metabolismo
3.
Glob Health Action ; 15(1): 2062175, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35730550

RESUMEN

Science education and research have the potential to drive profound change in low- and middle-income countries (LMICs) through encouraging innovation, attracting industry, and creating job opportunities. However, in LMICs, research capacity is often limited, and acquisition of funding and access to state-of-the-art technologies is challenging. The Alliance for Global Health and Science (the Alliance) was founded as a partnership between the University of California, Berkeley (USA) and Makerere University (Uganda), with the goal of strengthening Makerere University's capacity for bioscience research. The flagship program of the Alliance partnership is the MU/UCB Biosciences Training Program, an in-country, hands-on workshop model that trains a large number of students from Makerere University in infectious disease and molecular biology research. This approach nucleates training of larger and more diverse groups of students, development of mentoring and bi-directional research partnerships, and support of the local economy. Here, we describe the project, its conception, implementation, challenges, and outcomes of bioscience research workshops. We aim to provide a blueprint for workshop implementation, and create a valuable resource for bioscience research capacity strengthening in LMICs.


Asunto(s)
Países en Desarrollo , Salud Global , Creación de Capacidad , Humanos , Pobreza , Estudiantes , Universidades
4.
Nat Microbiol ; 5(9): 1170-1181, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32601452

RESUMEN

A variety of cell surface structures dictate interactions between bacteria and their environment, including their viruses (bacteriophages). Members of the human gut Bacteroidetes characteristically produce several phase-variable capsular polysaccharides (CPSs), but their contributions to bacteriophage interactions are unknown. To begin to understand how CPSs have an impact on Bacteroides-phage interactions, we isolated 71 Bacteroides thetaiotaomicron-infecting bacteriophages from two locations in the United States. Using B. thetaiotaomicron strains that express defined subsets of CPSs, we show that CPSs dictate host tropism for these phages and that expression of non-permissive CPS variants is selected under phage predation, enabling survival. In the absence of CPSs, B. thetaiotaomicron escapes bacteriophage predation by altering expression of eight distinct phase-variable lipoproteins. When constitutively expressed, one of these lipoproteins promotes resistance to multiple bacteriophages. Our results reveal important roles for Bacteroides CPSs and other cell surface structures that allow these bacteria to persist under bacteriophage predation, and hold important implications for using bacteriophages therapeutically to target gut symbionts.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Bacteroides thetaiotaomicron/virología , Lipoproteínas/metabolismo , Polisacáridos/metabolismo , Animales , Bacteriófagos , Bacteroides/virología , Femenino , Vida Libre de Gérmenes , Humanos , Masculino , Ratones , Polisacáridos/genética , Transcriptoma
5.
Nat Microbiol ; 3(6): 662-669, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29686297

RESUMEN

Clostridium difficile is an opportunistic diarrhoeal pathogen, and C. difficile infection (CDI) represents a major health care concern, causing an estimated 15,000 deaths per year in the United States alone 1 . Several enteric pathogens, including C. difficile, leverage inflammation and the accompanying microbial dysbiosis to thrive in the distal gut 2 . Although diet is among the most powerful available tools for affecting the health of humans and their relationship with their microbiota, investigation into the effects of diet on CDI has been limited. Here, we show in mice that the consumption of microbiota-accessible carbohydrates (MACs) found in dietary plant polysaccharides has a significant effect on CDI. Specifically, using a model of antibiotic-induced CDI that typically resolves within 12 days of infection, we demonstrate that MAC-deficient diets perpetuate CDI. We show that C. difficile burdens are suppressed through the addition of either a diet containing a complex mixture of MACs or a simplified diet containing inulin as the sole MAC source. We show that switches between these dietary conditions are coincident with changes to microbiota membership, its metabolic output and C. difficile-mediated inflammation. Together, our data demonstrate the outgrowth of MAC-utilizing taxa and the associated end products of MAC metabolism, namely, the short-chain fatty acids acetate, propionate and butyrate, are associated with decreased C. difficile fitness despite increased C. difficile toxin expression in the gut. Our findings, when placed into the context of the known fibre deficiencies of a human Western diet, provide rationale for pursuing MAC-centric dietary strategies as an alternate line of investigation for mitigating CDI.


Asunto(s)
Antibacterianos/efectos adversos , Infecciones por Clostridium/dietoterapia , Carbohidratos de la Dieta/administración & dosificación , Disbiosis/dietoterapia , Plantas/metabolismo , Animales , Antibacterianos/farmacología , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/inducido químicamente , Infecciones por Clostridium/complicaciones , Carbohidratos de la Dieta/farmacología , Modelos Animales de Enfermedad , Disbiosis/etiología , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Inulina/administración & dosificación , Inulina/farmacología , Ratones , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...