Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229187

RESUMEN

Somatic variant detection is an integral part of cancer genomics analysis. While most methods have focused on short-read sequencing, long-read technologies now offer potential advantages in terms of repeat mapping and variant phasing. We present DeepSomatic, a deep learning method for detecting somatic SNVs and insertions and deletions (indels) from both short-read and long-read data, with modes for whole-genome and exome sequencing, and able to run on tumor-normal, tumor-only, and with FFPE-prepared samples. To help address the dearth of publicly available training and benchmarking data for somatic variant detection, we generated and make openly available a dataset of five matched tumor-normal cell line pairs sequenced with Illumina, PacBio HiFi, and Oxford Nanopore Technologies, along with benchmark variant sets. Across samples and technologies (short-read and long-read), DeepSomatic consistently outperforms existing callers, particularly for indels.

2.
medRxiv ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39228712

RESUMEN

More than 50% of families with suspected rare monogenic diseases remain unsolved after whole genome analysis by short read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing, and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare disease cohort of 98 samples, including 41 probands and some family members, using nanopore sequencing, achieving per sample ∼36x average coverage and 32 kilobase (kb) read N50 from a single flow cell. Our Napu pipeline generated assemblies, phased variants, and methylation calls. LRS covered, on average, coding exons in ∼280 genes and ∼5 known Mendelian disease genes that were not covered by SRS. In comparison to SRS, LRS detected additional rare, functionally annotated variants, including SVs and tandem repeats, and completely phased 87% of protein-coding genes. LRS detected additional de novo variants, and could be used to distinguish postzygotic mosaic variants from prezygotic de novos . Eleven probands were solved, with diverse underlying genetic causes including de novo and compound heterozygous variants, large-scale SVs, and epigenetic modifications. Our study demonstrates LRS's potential to enhance diagnostic yield for rare monogenic diseases, implying utility in future clinical genomics workflows.

3.
bioRxiv ; 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39345378

RESUMEN

The Genome in a Bottle Consortium (GIAB), hosted by the National Institute of Standards and Technology (NIST), is developing new matched tumor-normal samples, the first to be explicitly consented for public dissemination of genomic data and cell lines. Here, we describe a comprehensive genomic dataset from the first individual, HG008, including DNA from an adherent, epithelial-like pancreatic ductal adenocarcinoma (PDAC) tumor cell line and matched normal cells from duodenal and pancreatic tissues. Data for the tumor-normal matched samples comes from thirteen distinct state-of-the-art whole genome measurement technologies, including high depth short and long-read bulk whole genome sequencing (WGS), single cell WGS, and Hi-C, and karyotyping. These data will be used by the GIAB Consortium to develop matched tumor-normal benchmarks for somatic variant detection. We expect these data to facilitate innovation for whole genome measurement technologies, de novo assembly of tumor and normal genomes, and bioinformatic tools to identify small and structural somatic mutations. This first-of-its-kind broadly consented open-access resource will facilitate further understanding of sequencing methods used for cancer biology.

4.
NPJ Vaccines ; 9(1): 99, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839821

RESUMEN

Vaccination has proven to be a valuable tool to combat SARS-CoV-2. However, reports of rare adverse reactions such as thrombosis/thrombocytopenia syndrome after ChAdOx1 nCoV-19 vaccination have caused scientific, public and media concern. ChAdOx1 was vectorised from the Y25 chimpanzee adenovirus, which was selected due to low human seroprevalence to circumvent pre-existing immunity. In this study, we aimed to explore patterns of T-cell activation after SARS-CoV-2 COVID-19 vaccine exposure in vitro using PBMCs collected from pre-pandemic ChAdOx1 nCoV-19 naïve healthy donors (HDs), and ChAdOx1 nCoV-19 and Pfizer vaccinated controls. PBMCs were assessed for T-cell proliferation using the lymphocyte transformation test (LTT) following exposure to SARS-CoV-2 COVID-19 vaccines. Cytokine analysis was performed via intracellular cytokine staining, ELISpot assay and LEGENDplex immunoassays. T-cell assays performed in pre-pandemic vaccine naïve HDs, revealed widespread lymphocyte stimulation after exposure to ChAdOx1 nCoV-19 (95%), ChAdOx-spike (90%) and the Ad26.COV2. S vaccine, but not on exposure to the BNT162b2 vaccine. ICS analysis demonstrated that CD4+ CD45RO+ memory T-cells are activated by ChAdOx1 nCoV-19 in vaccine naïve HDs. Cytometric immunoassays showed ChAdOx1 nCoV-19 exposure was associated with the release of proinflammatory and cytotoxic molecules, such as IFN-γ, IL-6, perforin, granzyme B and FasL. These studies demonstrate a ubiquitous T-cell response to ChAdOx1 nCoV-19 and Ad26.COV2. S in HDs recruited prior to the SARS-CoV-2 pandemic, with T-cell stimulation also identified in vaccinated controls. This may be due to underlying T-cell cross-reactivity with prevalent human adenoviruses and further study will be needed to identify T-cell epitopes involved.

5.
J Microbiol Biol Educ ; 25(1): e0015123, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661417

RESUMEN

The COVID-19 pandemic has underscored the urgent need for microbiology literacy in society. Microbiology knowledge, and its dissemination, can help inform and increase the objectivity of important decisions, such as treatment or vaccination. A microbiology learning experience titled "What you can't see can hurt you" was delivered as part of a larger outreach event where children were exposed to various aspects of medicine and health care fields. The activity involved an introduction to and a discussion of bacteria of clinical importance and the use of a smartphone-attachable paper-based foldable microscope. To explore the impact of this activity on participants' interest in science and microbiology, a pre- and post-activity survey of five questions on an emoji-based Likert scale was completed by the participants. A statistically significant increase in their interest in microbes and where to find them, as well as in microscopy, was observed after the event. Making microbes visible to children and allowing them to capture images of microbes exposes them directly and personally to microscopy and microbiology. An affordable low-cost paper-based microscope can become an alternative approach to teaching and learning to deliver clinical microbiology information to a wide audience range.

6.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585974

RESUMEN

Most current studies rely on short-read sequencing to detect somatic structural variation (SV) in cancer genomes. Long-read sequencing offers the advantage of better mappability and long-range phasing, which results in substantial improvements in germline SV detection. However, current long-read SV detection methods do not generalize well to the analysis of somatic SVs in tumor genomes with complex rearrangements, heterogeneity, and aneuploidy. Here, we present Severus: a method for the accurate detection of different types of somatic SVs using a phased breakpoint graph approach. To benchmark various short- and long-read SV detection methods, we sequenced five tumor/normal cell line pairs with Illumina, Nanopore, and PacBio sequencing platforms; on this benchmark Severus showed the highest F1 scores (harmonic mean of the precision and recall) as compared to long-read and short-read methods. We then applied Severus to three clinical cases of pediatric cancer, demonstrating concordance with known genetic findings as well as revealing clinically relevant cryptic rearrangements missed by standard genomic panels.

7.
Clin Exp Allergy ; 54(1): 21-33, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38177093

RESUMEN

BACKGROUND: Vancomycin, a glycopeptide antibiotic used for Gram-positive bacterial infections, has been linked with drug reaction with eosinophilia and systemic symptoms (DRESS) in HLA-A*32:01-expressing individuals. This is associated with activation of T lymphocytes, for which glycolysis has been isolated as a fuel pathway following antigenic stimulation. However, the metabolic processes that underpin drug-reactive T-cell activation are currently undefined and may shed light on the energetic conditions needed for the elicitation of drug hypersensitivity or tolerogenic pathways. Here, we sought to characterise the immunological and metabolic pathways involved in drug-specific T-cell activation within the context of DRESS pathogenesis using vancomycin as model compound and drug-reactive T-cell clones (TCCs) generated from healthy donors and vancomycin-hypersensitive patients. METHODS: CD4+ and CD8+ vancomycin-responsive TCCs were generated by serial dilution. The Seahorse XFe96 Analyzer was used to measure the extracellular acidification rate (ECAR) as an indicator of glycolytic function. Additionally, T-cell proliferation and cytokine release (IFN-γ) assay were utilised to correlate the bioenergetic characteristics of T-cell activation with in vitro assays. RESULTS: Model T-cell stimulants induced non-specific T-cell activation, characterised by immediate augmentation of ECAR and rate of ATP production (JATPglyc). There was a dose-dependent and drug-specific glycolytic shift when vancomycin-reactive TCCs were exposed to the drug. Vancomycin-reactive TCCs did not exhibit T-cell cross-reactivity with structurally similar compounds within proliferative and cytokine readouts. However, cross-reactivity was observed when analysing energetic responses; TCCs with prior specificity for vancomycin were also found to exhibit glycolytic switching after exposure to teicoplanin. Glycolytic activation of TCC was HLA restricted, as exposure to HLA blockade attenuated the glycolytic induction. CONCLUSION: These studies describe the glycolytic shift of CD4+ and CD8+ T cells following vancomycin exposure. Since similar glycolytic switching is observed with teicoplanin, which did not activate T cells, it is possible the master switch for T-cell activation is located upstream of metabolic signalling.


Asunto(s)
Teicoplanina , Vancomicina , Humanos , Vancomicina/efectos adversos , Linfocitos T CD8-positivos , Activación de Linfocitos , Citocinas , Glucólisis
8.
J Investig Med ; 72(3): 305-311, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38142266

RESUMEN

Chamomile (Matricaria chamomilla) is a plant with known antimicrobial, anti-inflammatory, and analgesic properties. Homeopathic drops containing chamomile extract are often used for ear pain and chronic ear infections. We aimed to evaluate the antimicrobial effect of over-the-counter eardrops containing chamomile against organisms causing bacterial conjunctivitis and otitis externa. Liquid cultures of Streptococcus aureus and Pseudomonas aeruginosa were exposed to increasing concentrations of eardrops containing chamomile extract. Liquid cultures of S. aureus and Streptococcus pneumoniae were exposed to increasing concentrations of chamomile eye drops for 5, 10, 15, and 45 min. Colony forming units (CFUs) were assessed after 18 h. Viability assays for these organisms were performed using the resazurin microdilution assay. We observed a reduction in the number of P. aeruginosa CFUs when the bacteria were exposed to any of the three concentrations of the chamomile drops as early as 5 min, with maximal reduction upon exposure to the 30% concentration at 45 min. Reduction in S. aureus CFUs, on the other hand, was observed for all three concentrations as maximal in the 5 min of exposure. We observed a marked reduction in the number of S. aureus CFUs upon exposure to any of the three preparations of chamomile-containing eye drops, which was almost immediate at 10% concentration. Streptococcus pneumoniae reduction happened at 5 min and continued through the 45-min observation period for all three concentrations. Our findings suggest that over-the-counter ear drops containing chamomile extract could potentially be used as a non-prescription treatment for mild cases of otitis externa and bacterial conjunctivitis.


Asunto(s)
Antiinfecciosos , Conjuntivitis Bacteriana , Otitis Externa , Extractos Vegetales , Humanos , Manzanilla , Otitis Externa/microbiología , Soluciones Oftálmicas/farmacología , Soluciones Oftálmicas/uso terapéutico , Staphylococcus aureus , Antiinfecciosos/farmacología
9.
Toxicol Sci ; 197(1): 38-52, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37788119

RESUMEN

In vitro preclinical drug-induced liver injury (DILI) risk assessment relies largely on the use of hepatocytes to measure drug-specific changes in cell function or viability. Unfortunately, this does not provide indications toward the immunogenicity of drugs and/or the likelihood of idiosyncratic reactions in the clinic. This is because the molecular initiating event in immune DILI is an interaction of the drug-derived antigen with MHC proteins and the T-cell receptor. This study utilized immune cells from drug-naïve donors, recently established immune cell coculture systems and blinded compounds with and without DILI liabilities to determine whether these new methods offer an improvement over established assessment methods for the prediction of immune-mediated DILI. Ten blinded test compounds (6 with known DILI liabilities; 4 with lower DILI liabilities) and 5 training compounds, with known T-cell-mediated immune reactions in patients, were investigated. Naïve T-cells were activated with 4/5 of the training compounds (nitroso sulfamethoxazole, vancomycin, Bandrowski's base, and carbamazepine) and clones derived from the priming assays were activated with drug in a dose-dependent manner. The test compounds with DILI liabilities did not stimulate T-cell proliferative responses during dendritic cell-T-cell coculture; however, CD4+ clones displaying reactivity were detected toward 2 compounds (ciprofloxacin and erythromycin) with known liabilities. Drug-responsive T-cells were not detected with the compounds with lower DILI liabilities. This study provides compelling evidence that assessment of intrinsic drug immunogenicity, although complex, can provide valuable information regarding immune liabilities of some compounds prior to clinical studies or when immune reactions are observed in patients.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatocitos , Humanos , Células Cultivadas , Hepatocitos/metabolismo , Técnicas de Cocultivo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Medición de Riesgo
10.
Int J Angiol ; 32(2): 131-135, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37207012

RESUMEN

The use of low-dose tissue plasminogen activator (tPA) in Hispanic patients with submassive pulmonary embolism (PE) is understudied. The purpose of this study is to explore the use of low-dose tPA in Hispanic patients with submissive PE compared with counterparts that received heparin alone. We retrospectively analyzed a single-center registry of patients with acute PE between 2016 and 2022. Out of 72 patients admitted for acute PE and cor pulmonale, we identified six patients that were treated with conventional anticoagulation (heparin alone) and six patients who received low-dose tPA (and heparin afterward). We analyzed if low-dose tPA was associated with differences in length of stay (LOS) and bleeding complications. Both groups were similar in regard to age, gender, and PE severity (based on Pulmonary Embolism Severity Index scores). Mean total LOS for the low-dose tPA group was 5.3 days, compared with 7.3 days in the heparin group ( p = 0.29). Mean intensive care unit (ICU) LOS for the low-dose tPA group was 1.3 days compared with 3 days in the heparin group ( p = 0.035). There were no clinically relevant bleeding complications documented in either the heparin or the low-dose tPA group. Low-dose tPA for submassive PE in Hispanic patients was associated with a shorter ICU LOS without a significant increase in bleeding risk. Low-dose tPA appears to be a reasonable treatment option in Hispanic patients with submassive PE who are not at high bleeding risk (<5%).

11.
J Immunol ; 210(8): 1031-1042, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36881872

RESUMEN

Previous studies have shown that cysteine-reactive drug metabolites bind covalently with protein to activate patient T cells. However, the nature of the antigenic determinants that interact with HLA and whether T cell stimulatory peptides contain the bound drug metabolite has not been defined. Because susceptibility to dapsone hypersensitivity is associated with the expression of HLA-B*13:01, we have designed and synthesized nitroso dapsone-modified, HLA-B*13:01 binding peptides and explored their immunogenicity using T cells from hypersensitive human patients. Cysteine-containing 9-mer peptides with high binding affinity to HLA-B*13:01 were designed (AQDCEAAAL [Pep1], AQDACEAAL [Pep2], and AQDAEACAL [Pep3]), and the cysteine residue was modified with nitroso dapsone. CD8+ T cell clones were generated and characterized in terms of phenotype, function, and cross-reactivity. Autologous APCs and C1R cells expressing HLA-B*13:01 were used to determine HLA restriction. Mass spectrometry confirmed that nitroso dapsone-peptides were modified at the appropriate site and were free of soluble dapsone and nitroso dapsone. APC HLA-B*13:01-restricted nitroso dapsone-modified Pep1- (n = 124) and Pep3-responsive (n = 48) CD8+ clones were generated. Clones proliferated and secreted effector molecules with graded concentrations of nitroso dapsone-modified Pep1 or Pep3. They also displayed reactivity against soluble nitroso dapsone, which forms adducts in situ, but not with the unmodified peptide or dapsone. Cross-reactivity was observed between nitroso dapsone-modified peptides with cysteine residues in different positions in the peptide sequence. These data characterize a drug metabolite hapten CD8+ T cell response in an HLA risk allele-restricted form of drug hypersensitivity and provide a framework for structural analysis of hapten HLA binding interactions.


Asunto(s)
Dapsona , Hipersensibilidad a las Drogas , Humanos , Cisteína , Linfocitos T CD8-positivos , Antígenos HLA-B , Péptidos , Haptenos
12.
Chem Res Toxicol ; 35(2): 199-202, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35107993

RESUMEN

Teicoplanin is a glycopeptide antibiotic deployed to combat Gram-positive bacterial infection and has recently been associated with development of adverse drug reactions, particularly following previous exposure to vancomycin. In this study, we generated teicoplanin-specific monoclonal T-cell populations from healthy volunteers expressing HLA-A*32:01 and defined pathways of T-cell activation and HLA allele restriction. Teicoplanin-responsive T-cells were CD8+, HLA class I-restricted, and cross-reacted with the lipoglycopeptide daptomycin in proliferation and cytokine/cytolytic molecule (granzyme B, Perforin, and FasL) release assays. These data show that teicoplanin activates T-cells, which may play a role in the pathogenesis of teicoplanin-induced adverse events, in HLA-A*32:01 positive donors.


Asunto(s)
Antibacterianos/farmacología , Antígenos HLA-A/biosíntesis , Linfocitos T/efectos de los fármacos , Teicoplanina/farmacología , Antibacterianos/química , Voluntarios Sanos , Humanos , Linfocitos T/metabolismo , Teicoplanina/química
13.
Toxicol Sci ; 186(1): 58-69, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-34850240

RESUMEN

An emerging clinical issue associated with immune-oncology agents is the collateral effects on the tolerability of concomitant medications. One report of this phenomenon was the increased incidence of hypersensitivity reactions observed in patients receiving concurrent immune checkpoint inhibitors (ICIs) and sulfasalazine (SLZ). Thus, the aim of this study was to characterize the T cells involved in the pathogenesis of such reactions, and recapitulate the effects of inhibitory checkpoint blockade on de-novo priming responses to compounds within in vitro platforms. A regulatory competent human dendritic cell/T-cell coculture assay was used to model the effects of ICIs on de novo nitroso sulfamethoxazole- and sulfapyridine (SP) (the sulfonamide component of SLZ) hydroxylamine-specific priming responses. The role of T cells in the pathogenesis of the observed reactions was explored in 3 patients through phenotypic characterization of SP/sulfapyridine hydroxylamine (SPHA)-responsive T-cell clones (TCC), and assessment of cross-reactivity and pathways of T-cell activation. Augmentation of the frequency of responding drug-specific T cells and intensity of the T-cell response was observed with PD-1/PD-L1 blockade. Monoclonal populations of SP- and SPHA-responsive T cells were isolated from all 3 patients. A core secretory effector molecule profile (IFN-γ, IL-13, granzyme B, and perforin) was identified for SP and SPHA-responsive TCC, which proceeded through Pi and hapten mechanisms, respectively. Data presented herein provides evidence that drug-responsive T cells are effectors of hypersensitivity reactions observed in oncology patients administered ICIs and SLZ. Perturbation of drug-specific T-cell priming is a plausible explanation for clinical observations of how an increased incidence of these adverse events is occurring.


Asunto(s)
Hipersensibilidad a las Drogas , Sulfasalazina , Humanos , Incidencia , Activación de Linfocitos , Sulfasalazina/efectos adversos , Sulfonamidas
14.
Toxicol Sci ; 183(1): 139-153, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34175955

RESUMEN

Drug rash with eosinophilia with systemic symptoms (DRESS) is a serious adverse event associated with use of the glycopeptide antibiotic vancomycin. Vancomycin-induced drug rash with eosinophilia with systemic symptoms is associated with the expression of human leukocyte antigen (HLA)-A*32:01, suggesting that the drug interacts with this HLA to activate CD8+ T cells. The purpose of this study was to utilize peripheral blood mononuclear cell from healthy donors to: (1) investigate whether expression of HLA-A*32:01 is critical for the priming naïve of T cells with vancomycin and (2) generate T-cell clones (TCC) to determine whether vancomycin exclusively activates CD8+ T cells and to define cellular phenotype, pathways of drug presentation and cross-reactivity. Dendritic cells were cultured with naïve T cells and vancomycin for 2 weeks. On day 14, cells were restimulated with vancomycin and T-cell proliferation was assessed by [3H]-thymidine incorporation. Vancomycin-specific TCC were generated by serial dilution and repetitive mitogen stimulation. Naïve T cells from HLA-A*02:01 positive and negative donors were activated with vancomycin; however the strength of the induced response was significantly stronger in donors expressing HLA-A*32:01. Vancomycin-responsive CD4+ and CD8+ TCC from HLA-A*32:01+ donors expressed high levels of CXCR3 and CCR4, and secreted IFN-γ, IL-13, and cytolytic molecules. Activation of CD8+ TCC was HLA class I-restricted and dependent on a direct vancomycin HLA binding interaction with no requirement for processing. Several TCC displayed cross-reactivity with teicoplanin and daptomycin. To conclude, this study provides evidence that vancomycin primes naïve T cells from healthy donors expressing HLA-A*32:01 through a direct pharmacological binding interaction. Cross-reactivity of CD8+ TCC with teicoplanin provides an explanation for the teicoplanin reactions observed in vancomycin hypersensitive patients.


Asunto(s)
Preparaciones Farmacéuticas , Vancomicina , Linfocitos T CD8-positivos , Antígenos HLA-A , Humanos , Interleucina-13 , Leucocitos Mononucleares , Vancomicina/toxicidad
15.
J Immunother Cancer ; 9(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34049931

RESUMEN

Many adverse reactions associated with immune checkpoint inhibitor (ICI) treatments are immunologically driven and may necessitate discontinuation of the ICI. Herein, we present a patient who had been administered the radio contrast media amidotrizoate multiple times without issue but who then developed a Stevens-Johnson syndrome reaction after coadministration of atezolizumab. Causality was confirmed by a positive re-challenge with amidotrizoate and laboratory investigations that implicated T cells. Importantly, the introduction of atezolizumab appears to have altered the immunologic response to amidotrizoate in terms of the tolerance-elicitation continuum. Proof of concept studies demonstrated enhancement of recall responses to a surrogate antigen panel following in-vitro (healthy donors) and in-vivo (ICI patients) administrations of ICIs. Our findings highlight the importance of considering all concomitant medications in patients on ICIs who develop immune-mediated adverse reactions. In the event of some immune-related adverse reactions, it may be critical to identify the culprit antigen-forming entity that the ICIs have altered the perception of rather than simply attribute causality to the ICI itself in order to optimize both patient safety and treatment of malignancies.


Asunto(s)
Anticuerpos Monoclonales Humanizados/efectos adversos , Carcinoma de Células Renales/tratamiento farmacológico , Medios de Contraste/efectos adversos , Diatrizoato/efectos adversos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias Renales/tratamiento farmacológico , Síndrome de Stevens-Johnson/etiología , Linfocitos T/efectos de los fármacos , Corticoesteroides/uso terapéutico , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/inmunología , Humanos , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/inmunología , Masculino , Valor Predictivo de las Pruebas , Factores de Riesgo , Síndrome de Stevens-Johnson/diagnóstico , Síndrome de Stevens-Johnson/tratamiento farmacológico , Síndrome de Stevens-Johnson/inmunología , Linfocitos T/inmunología
16.
Nat Commun ; 12(1): 2055, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824342

RESUMEN

Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.


Asunto(s)
Antivirales/farmacología , COVID-19/inmunología , COVID-19/virología , Reacciones Cruzadas/inmunología , Inmunoensayo/métodos , SARS-CoV-2/fisiología , Linfocitos T/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/epidemiología , Proliferación Celular , Citocinas/metabolismo , Células HEK293 , Personal de Salud , Humanos , Inmunoglobulina G/inmunología , Memoria Inmunológica , Interferón gamma/metabolismo , Pandemias , Péptidos/metabolismo , SARS-CoV-2/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...