Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 81(9): 778-788, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28185645

RESUMEN

BACKGROUND: Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. METHODS: We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. RESULTS: Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. CONCLUSIONS: Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors.


Asunto(s)
Conducta Alimentaria/fisiología , Neuronas GABAérgicas/fisiología , Heroína/administración & dosificación , Motivación/fisiología , Narcóticos/administración & dosificación , Prosencéfalo/fisiología , Receptores Opioides mu/fisiología , Animales , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Femenino , Neuronas GABAérgicas/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Morfina/administración & dosificación , Motivación/efectos de los fármacos , Vías Nerviosas/fisiología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/metabolismo , Receptores Opioides mu/genética , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiología
2.
Science ; 344(6185): 1249783, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24833397

RESUMEN

Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors.


Asunto(s)
Janus Quinasa 2/metabolismo , Receptores de Somatotropina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cisteína/química , Activación Enzimática , Células HEK293 , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Somatotropina/química , Receptores de Somatotropina/genética
3.
PLoS One ; 8(9): e74706, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069332

RESUMEN

Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund's Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain.


Asunto(s)
Analgesia , Analgésicos Opioides/farmacología , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Receptores Opioides mu/genética , Animales , Estreñimiento/inducido químicamente , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Femenino , Eliminación de Gen , Expresión Génica , Técnicas de Inactivación de Genes , Orden Génico , Marcación de Gen , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Masculino , Ratones , Ratones Noqueados , Morfina/efectos adversos , Morfina/farmacología , Canal de Sodio Activado por Voltaje NAV1.8/genética , Nocicepción/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/genética , Dimensión del Dolor , Unión Proteica , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Umbral Sensorial/efectos de los fármacos
4.
Addict Biol ; 17(1): 1-12, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21955143

RESUMEN

Addiction is a chronic brain disorder. Prolonged abstinence from drugs of abuse involves dysphoria, high stress responsiveness and craving. The neurobiology of drug abstinence, however, is poorly understood. We previously identified a unique set of hundred mu-opioid receptor-dependent genes in the extended amygdala, a key site for hedonic and stress processing in the brain. Here we examined these candidate genes either immediately after chronic morphine, nicotine, Δ9-tetrahydrocannabinol or alcohol, or following 4 weeks of abstinence. Regulation patterns strongly differed among chronic groups. In contrast, gene regulations strikingly converged in the abstinent groups and revealed unforeseen common adaptations within a novel huntingtin-centered molecular network previously unreported in addiction research. This study demonstrates that, regardless the drug, a specific set of transcriptional regulations develops in the abstinent brain, which possibly contributes to the negative affect characterizing protracted abstinence. This transcriptional signature may represent a hallmark of drug abstinence and a unitary adaptive molecular mechanism in substance abuse disorders.


Asunto(s)
Conducta Adictiva/fisiopatología , Encéfalo/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/fisiopatología , Trastornos Relacionados con Sustancias/fisiopatología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Conducta Adictiva/genética , Análisis por Conglomerados , Modelos Animales de Enfermedad , Dronabinol/administración & dosificación , Etanol/administración & dosificación , Expresión Génica/genética , Redes Reguladoras de Genes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/administración & dosificación , Nicotina/administración & dosificación , Análisis de Componente Principal , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Opioides mu/efectos de los fármacos , Receptores Opioides mu/genética , Síndrome de Abstinencia a Sustancias/genética , Trastornos Relacionados con Sustancias/genética , Templanza , Tiempo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
5.
Addict Biol ; 16(4): 615-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21392173

RESUMEN

Alcoholism is characterized by a progressive loss of control over ethanol intake. The purpose of this study was to identify transcriptional changes selectively associated with excessive ethanol drinking in dependent mice, as opposed to non-dependent mice maintaining a stable voluntary consumption or mice solely undergoing forced intoxication. We measured expression levels of 106 candidate genes in the extended amygdala, a key brain structure for the development of drug addiction. Cluster analysis identified 17 and 15 genes selectively induced or repressed, respectively, under conditions of excessive drinking. These genes belong to signaling pathways involved in neurotransmission and transcriptional regulation.


Asunto(s)
Intoxicación Alcohólica/genética , Intoxicación Alcohólica/fisiopatología , Alcoholismo/genética , Alcoholismo/fisiopatología , Amígdala del Cerebelo/fisiopatología , Regulación de la Expresión Génica/fisiología , Transcripción Genética/genética , Animales , Estudios de Asociación Genética , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Opioides mu/genética , Receptores Opioides mu/fisiología , Transducción de Señal/genética , Transmisión Sináptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...