Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(28): eadg7269, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37436976

RESUMEN

Materials with Kagome nets are of particular importance for their potential combination of strong correlation, exotic magnetism, and electronic topology. KV3Sb5 was discovered to be a layered topological metal with a Kagome net of vanadium. Here, we fabricated Josephson Junctions of K1-xV3Sb5 and induced superconductivity over long junction lengths. Through magnetoresistance and current versus phase measurements, we observed a magnetic field sweeping direction-dependent magnetoresistance and an anisotropic interference pattern with a Fraunhofer pattern for in-plane magnetic field but a suppression of critical current for out-of-plane magnetic field. These results indicate an anisotropic internal magnetic field in K1-xV3Sb5 that influences the superconducting coupling in the junction, possibly giving rise to spin-triplet superconductivity. In addition, the observation of long-lived fast oscillations shows evidence of spatially localized conducting channels arising from edge states. These observations pave the way for studying unconventional superconductivity and Josephson device based on Kagome metals with electron correlation and topology.

2.
Sci Adv ; 8(8): eabg2469, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35196092

RESUMEN

Antiferromagnet spintronic devices eliminate or mitigate long-range dipolar fields, thereby promising ultrafast operation. For spin transport electronics, one of the most successful strategies is the creation of metallic synthetic antiferromagnets, which, to date, have largely been formed from transition metals and their alloys. Here, we show that synthetic antiferrimagnetic sandwiches can be formed using exchange coupling spacer layers composed of atomically ordered RuAl layers and ultrathin, perpendicularly magnetized, tetragonal ferrimagnetic Heusler layers. Chemically ordered RuAl layers can both be grown on top of a Heusler layer and allow for the growth of ordered Heusler layers deposited on top of it that are as thin as one unit cell. The RuAl spacer layer gives rise to a thickness-dependent oscillatory interlayer coupling with an oscillation period of ~1.1 nm. The observation of ultrathin ordered synthetic antiferrimagnets substantially expands the family of synthetic antiferromagnets and magnetic compounds for spintronic technologies.

3.
Nanotechnology ; 33(8)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34678795

RESUMEN

Till date, the existing understanding of negative differential resistance (NDR) is obtained from metal-ferro-metal-insulator-semiconductor (MFMIS) FET, and it has been utilized for both MFMIS and metal-ferro-insulator-semiconductor (MFIS) based NCFETs. However, in MFIS architecture, the ferroelectric capacitance (CFE) is not a lumped capacitance. Therefore, for MFIS negative capacitance (NC) devices, the physical explanation which governs the NDR mechanism needs to be addressed. In this work, for the first time, we present the first principle explanation of the NDR effect in MFIS NC FDSOI. We found that the output current variation with the drain to source voltage (VDS), (i.e.gds) primarily depends upon two parameters: (a)VDSdependent inversion charge gradient (∂n/∂VDS); (b)VDSsensitive electron velocity (∂v/∂VDS), and the combined effect of these two dependencies results in NDR. Further, to mitigate the NDR effect, we proposed the BOX engineered NC FDSOI FET, in which the buried oxide (BOX) layer is subdivided into the ferroelectric (FE) layer and the SiO2layer. In doing so, the inversion charge in the channel is enhanced by the BOX engineered FE layer, which in turn mitigates the NDR and a nearly zerogdswith a minimal positive slope has been obtained. Through well-calibrated TCAD simulations, by utilizing the obtained positivegds, we also designed aVDSindependent constant current mirror which is an essential part of analog circuits. Furthermore, we discussed the impact of the FE parameter (remanent polarization and coercive field) variation on the device performances. We have also compared the acquired results with existing literature on NC-based devices, which justifies that our proposed structure exhibits complete diminution of NDR, thus enabling its use in analog circuit design.

4.
Nat Commun ; 9(1): 4984, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30478261

RESUMEN

Highly efficient current-induced motion of chiral domain walls was recently demonstrated in synthetic antiferromagnetic (SAF) structures due to an exchange coupling torque (ECT). The ECT derives from the antiferromagnetic exchange coupling through a ruthenium spacer layer between the two perpendicularly magnetized layers that comprise the SAF. Here we report that the same ECT mechanism applies to ferrimagnetic bi-layers formed from adjacent Co and Gd layers. In particular, we show that the ECT is maximized at the temperature TA where the Co and Gd angular momenta balance each other, rather than at their magnetization compensation temperature TM. The current induced velocity of the domain walls is highly sensitive to longitudinal magnetic fields but we show that this not the case near TA. Our studies provide new insight into the ECT mechanism for ferrimagnetic systems. The high efficiency of the ECT makes it important for advanced domain wall based spintronic devices.

5.
Nano Lett ; 18(7): 4074-4080, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29905078

RESUMEN

Three-terminal spintronic memory devices based on the controlled manipulation of the proximate magnetization of a magnetic nanoelement using spin-orbit torques (SOTs) have attracted growing interest recently. These devices are nonvolatile, can operate at high speeds with low error rates, and have essentially infinite endurance, making them promising candidates for high-speed cache memory. Typically, the magnetization and spin polarization in these devices are collinear to one another, leading to a finite incubation time associated with the switching process. While switching can also be achieved when the magnetization easy axis and spin polarization are noncollinear, this requires the application of an external magnetic field for deterministic switching. Here, we demonstrate a novel SOT scheme that exploits non-uniform micromagnetic states to achieve deterministic switching when the spin polarization and magnetic moment axis are noncollinear to one another in the absence of external magnetic field. We also explore the use of a highly efficient SOT generator, oxygen-doped tungsten in the three-terminal device geometry, confirming its -50% spin Hall angle. Lastly, we illustrate how this scheme may potentially be useful for nanomagnetic logic applications.

6.
Nano Lett ; 18(3): 1826-1830, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29420900

RESUMEN

Recent developments in spin-orbit torques allow for highly efficient current-driven domain wall (DW) motion in nanowires with perpendicular magnetic anisotropy. Here, we show that chiral DWs can be driven into nonequilibrium states that can persist over tens of nanoseconds in Y-shaped magnetic nanowire junctions that have an input and two symmetric outputs. A single DW that is injected into the input splits and travels at very different velocities in the two output branches until it reaches its steady-state velocity. We find that this is due to the disparity between the fast temporal evolution of the spin current derived spin-orbit torque and a much-slower temporal evolution of the DMI-derived torque. Changing the DW polarity inverts the velocity asymmetry in the two output branches, a property that we use to demonstrate the sorting of domains.

7.
Sci Adv ; 3(5): e1602804, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28508072

RESUMEN

The use of current pulses to move domain walls along nanowires is one of the most exciting developments in spintronics over the past decade. We show that changing the sign of the curvature of a nanowire changes the speed of chiral Néel domain walls in perpendicularly magnetized nanowires by up to a factor of 10. The domain walls have an increased or decreased velocity in wires of a given curvature, independent of the domain wall chirality and the sign of the current-induced spin-orbit torques. Thus, adjacent domain walls move at different speeds. For steady motion of domain walls along the curved nanowire, the torque must increase linearly with the radius, which thereby results in a width-dependent tilting of the domain wall. We show that by using synthetic antiferromagnetic nanowires, the influence of the curvature on the domain wall's velocity is eliminated, and all domain walls move together, emphasizing the use of such structures for spintronic applications.

8.
Sci Adv ; 2(12): e1601742, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28028541

RESUMEN

Magnetoresistance (MR), the change of a material's electrical resistance in response to an applied magnetic field, is a technologically important property that has been the topic of intense study for more than a quarter century. We report the observation of an unusual "butterfly"-shaped titanic angular magnetoresistance (AMR) in the nonmagnetic Dirac material, ZrSiS, which we find to be the most conducting sulfide known, with a 2-K resistivity as low as 48(4) nΩ⋅cm. The MR in ZrSiS is large and positive, reaching nearly 1.8 × 105 percent at 9 T and 2 K at a 45° angle between the applied current (I || a) and the applied field (90° is H || c). Approaching 90°, a "dip" is seen in the AMR, which, by analyzing Shubnikov de Haas oscillations at different angles, we find to coincide with a very sharp topological phase transition unlike any seen in other known Dirac/Weyl materials. We find that ZrSiS has a combination of two-dimensional (2D) and 3D Dirac pockets comprising its Fermi surface and that the combination of high-mobility carriers and multiple pockets in ZrSiS allows for large property changes to occur as a function of angle between applied fields. This makes it a promising platform to study the physics stemming from the coexistence of 2D and 3D Dirac electrons as well as opens the door to creating devices focused on switching between different parts of the Fermi surface and different topological states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...