Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Clin Nutr ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710447

RESUMEN

BACKGROUND: Technology-assisted 24-h dietary recalls (24HRs) have been widely adopted in population nutrition surveillance. Evaluations of 24HRs inform improvements, but direct comparisons of 24HR methods for accuracy in reference to a measure of true intake are rarely undertaken in a single study population. OBJECTIVES: To compare the accuracy of energy and nutrient intake estimation of 4 technology-assisted dietary assessment methods relative to true intake across breakfast, lunch, and dinner. METHODS: In a controlled feeding study with a crossover design, 152 participants [55% women; mean age 32 y, standard deviation (SD) 11; mean body mass index 26 kg/m2, SD 5] were randomized to 1 of 3 separate feeding days to consume breakfast, lunch, and dinner, with unobtrusive weighing of foods and beverages consumed. Participants undertook a 24HR the following day [Automated Self-Administered Dietary Assessment Tool-Australia (ASA24); Intake24-Australia; mobile Food Record-Trained Analyst (mFR-TA); or Image-Assisted Interviewer-Administered 24-hour recall (IA-24HR)]. When assigned to IA-24HR, participants referred to images captured of their meals using the mobile Food Record (mFR) app. True and estimated energy and nutrient intakes were compared, and differences among methods were assessed using linear mixed models. RESULTS: The mean difference between true and estimated energy intake as a percentage of true intake was 5.4% (95% CI: 0.6, 10.2%) using ASA24, 1.7% (95% CI: -2.9, 6.3%) using Intake24, 1.3% (95% CI: -1.1, 3.8%) using mFR-TA, and 15.0% (95% CI: 11.6, 18.3%) using IA-24HR. The variances of estimated and true energy intakes were statistically significantly different for all methods (P < 0.01) except Intake24 (P = 0.1). Differential accuracy in nutrient estimation was present among the methods. CONCLUSIONS: Under controlled conditions, Intake24, ASA24, and mFR-TA estimated average energy and nutrient intakes with reasonable validity, but intake distributions were estimated accurately by Intake24 only (energy and protein). This study may inform considerations regarding instruments of choice in future population surveillance. This trial was registered at Australian New Zealand Clinical Trials Registry as ACTRN12621000209897.

2.
J Phys Chem A ; 128(4): 773-784, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38231826

RESUMEN

Organic-inorganic composite materials, combining polymers with transition metal (TM) atoms based on PAni and 3d TMs, have been designed and investigated in various spin states by performing density functional calculations. These designed composites were analyzed for their stability in different spin states as well as for their calculated electronic properties, including binding energies, frontier molecular orbitals, and dipole moments. Additionally, 3D isosurfaces and 2D scattered plots of reduced density gradient as a function of (sign λ2)ρ provide insights into the noncovalent interactions between the composite units. The most stable Mn@PAni composite has been assessed as a sensing material for chemical warfare blood agents (HCN, NCCl, NCBr, NCCN, and AsH3) using density functional-based calculations. The reduced band gap and significant red/blue shift in the UV-vis spectra obtained through TDDFT calculations underline the selectivity and efficiency of the Mn@PAni composite toward different analytes.

5.
J Mol Graph Model ; 124: 108566, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37487371

RESUMEN

The primary goal of the current research is to describe an effective and eco-friendly adsorbent for the removal of aquatic micropollutants. The design of the cellulose-modified zinc oxide (ZnO) nanocomposite was successfully carried out by density functional calculations. The proposed structures of the constituent and composite materials were confirmed using formation energy (Ef), frontier orbitals, band gaps (Egap), density of state (DOS) plots, natural bond orbitals (NBO), and UV-Vis spectral analysis. The cellulose/(ZnO)12 composite was further used for the adsorption of different heavy metal ions such as Hg(II), Pb(II), Cd(II), Ni(II), and As(III) through calculation of electronic and optical properties. The values of the adsorption energy (Eads) show that the As(III) interacted better with the composite in both phases, i.e., gas (-806.98 kcal/mol) and aqueous (-491.66 kcal/mol). The analysis of frontier molecular orbital data exhibited a decrease in the Egap of composite@metal ion complexes. The high negative value of the solvation energies (ΔEsol) indicates the suitability of composite@metal ions in an aqueous environment. The nature of interactions between metal ions and the composite unit is analyzed by noncovalent interactions (NCI) and the quantum theory of atoms in molecules (QTAIM). The theoretical results of the present study show the feasibility of the cellulose/(ZnO)12 composite for the removal of heavy metal ions and provide useful information to experimentalists to treat contaminated water.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Óxido de Zinc , Óxido de Zinc/química , Celulosa/química , Adsorción , Metales Pesados/química , Iones , Contaminantes Químicos del Agua/química , Cinética
8.
Molecules ; 28(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050029

RESUMEN

The structural and energetic properties of small silver clusters Agn with n = 2-100 atoms are reported. For n = 2-100 the embedded atom model for the calculation of the total energy of a given structure in combination with the basin-hopping search strategy for an unbiased structure optimization has been used to identify the energies and structures of the three energetically lowest-lying isomers. These optimized structures for n = 2-11 were subsequently studied further through density-functional-theory calculations. These calculations provide additional information on the electronic properties of the clusters that is lacking in the embedded-atom calculations. Thereby, also quantities related to the catalytic performance of the clusters are studied. The calculated properties in comparison to other available theoretical and experimental data show a good agreement. Previously unidentified magic (i.e., particularly stable) clusters have been found for n>80. In order to obtain a more detailed understanding of the structural properties of the clusters, various descriptors are used. Thereby, the silver clusters are compared to other noble metals and show some similarities to both copper and nickel systems, and also growth patterns have been identified. All vibrational frequencies of all the clusters have been calculated for the first time, and here we focus on the highest and lowest frequencies. Structural effects on the calculated frequencies were considered.

9.
J Mol Graph Model ; 117: 108285, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35964365

RESUMEN

Incorporating nanostructured photocatalysts in polymers is a strategic way to obtain novel water purification systems. Here, we present density functional theory (DFT) study of Polythiophene/Zinc oxide (PTh/ZnO) nanocomposite with high photocatalytic performance and stability which exhibits superior degradation of alizarine dye under the visible light condition with interaction energy of -149.55 kcal/mol between conducting polymer (PTh) and metal oxide, with PTh sponsoring more number of electrons to the conduction band of ZnO. The electrical and optical properties of optimized geometries of PTh/ZnO nanocomposite were studied by frontier molecular orbital analysis, natural bond orbital (NBO) charge simulation, natural electronic configuration, and UV-vis absorption spectra. The modulation of the energy band gap (∽ 2.60 eV) and exciton binding energy (∽ 0.36 eV) causes visible light absorption and hence enhances the photodegradation activity of PTh/ZnO. NBO analysis evidences the electron accepting behavior of ZnO in the composites as it withdraws electron cloud density of about 0.14e from the polymer unit.


Asunto(s)
Óxido de Zinc , Catálisis , Óxidos/química , Fotólisis , Polímeros , Tiofenos , Óxido de Zinc/química
10.
J Mol Graph Model ; 99: 107617, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32442905

RESUMEN

Different isomers of (CrO3)n (n = 1-10) cluster units have been investigated using Density functional approach. Their stability and reactivity has been analyzed by plotting chemical potential and HOMO-LUMO gap as a function of cluster size. The CrO3, (CrO3)6 and (CrO3)9 are identified as the most reactive species. Reactivity of each atomic site in the cluster has been interpreted using local reactivity descriptors called Fukui Function plots. The clusters have been doped with sulfur by adding it as substitutional impurity, effect of sulfur doping has been understood by analyzing excitation energies and absorption wavelengths using time dependent-DFT(TDDFT) at CAM-B3LYP level of theory.


Asunto(s)
Electrónica , Azufre , Teoría Funcional de la Densidad , Isomerismo , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA