RESUMEN
Hepatitis B virus core antigen (HBc) with the insertion of four external domains of the influenza A M2 protein (HBc/4M2e) form virus-like particles whose structure was studied using a combination of molecular modeling and cryo-electron microscopy (cryo-EM). It was also shown that self-assembling of the particles occurs inside bacterial cells, but despite the big inner volume of the core shell particle, purified HBc/4M2e contain an insignificant amount of bacterial proteins. It was shown that a fragment of the M2e corresponding to 4M2e insertion is prone to formation of amyloid-like fibrils. However, as the part of the immunodominant loop, M2e insertion does not show a tendency to intermolecular interaction. A full-atomic HBc-4M2e model with the resolution of about 3 Š(3.13 Šfor particles of Т = 4 symmetry, 3.7 Šfor particles of Т = 3 symmetry) was obtained by molecular modeling methods based on cryo-EM data.
Asunto(s)
Antígenos del Núcleo de la Hepatitis B , Proteínas de la Matriz Viral , Microscopía por Crioelectrón , Antígenos del Núcleo de la Hepatitis B/química , Virus de la Hepatitis B/química , Modelos Moleculares , Proteínas de la Matriz Viral/químicaRESUMEN
Two influenza A nucleoprotein variants (wild-type: G102R; and mutant: G102R and E292G) were studied with regard to macro-molecular interactions in oligomeric form (24-mers). The E292G mutation has been previously shown to provide cold adaptation. Molecular dynamics simulations of these complexes and trajectory analysis showed that the most significant difference between the obtained models was distance between nucleoprotein complex strands. The isolated complexes of two ribonucleoprotein variants were characterized by transmission electron microscopy and differential scanning fluorimetry (DSF). Presence of the E292G substitution was shown by DSF to affect nucleoprotein complex melting temperature. In the filament interface peptide model, it was shown that the peptide corresponding in primary structure to the wild-type NP (SGYDFEREGYS) is prone to temperature-dependent self-association, unlike the peptide corresponding to E292G substitution (SGYDFGREGYS). It was also shown that the SGYDFEREGYS peptide is capable of interacting with a monomeric nucleoprotein (wild type); this interaction's equilibrium dissociation constant is five orders of magnitude lower than for the SGYDFGREGYS peptide. Using small-angle neutron scattering (SANS), the supramolecular structures of isolated complexes of these proteins were studied at temperatures of 15, 32, and 37 °C. SANS data show that the structures of the studied complexes at elevated temperature differ from the rod-like particle model and react differently to temperature changes. The data suggest that the mechanism behind cold adaptation with E292G is associated with a weakening of the interaction between strands of the ribonucleoprotein complex and, as a result, the appearance of inter-chain interface flexibility necessary for complex function at low temperature.Communicated by Ramaswamy H. Sarma.