Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 18(10): e1010909, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36256684

RESUMEN

Viruses manipulate the cells they infect in order to replicate and spread. Due to strict size restrictions, viral genomes have reduced genetic space; how the action of the limited number of viral proteins results in the cell reprogramming observed during the infection is a long-standing question. Here, we explore the hypothesis that combinatorial interactions may expand the functional landscape of the viral proteome. We show that the proteins encoded by a plant-infecting DNA virus, the geminivirus tomato yellow leaf curl virus (TYLCV), physically associate with one another in an intricate network, as detected by a number of protein-protein interaction techniques. Importantly, our results indicate that intra-viral protein-protein interactions can modify the subcellular localization of the proteins involved. Using one particular pairwise interaction, that between the virus-encoded C2 and CP proteins, as proof-of-concept, we demonstrate that the combination of viral proteins leads to novel transcriptional effects on the host cell. Taken together, our results underscore the importance of studying viral protein function in the context of the infection. We propose a model in which viral proteins might have evolved to extensively interact with other elements within the viral proteome, enlarging the potential functional landscape available to the pathogen.


Asunto(s)
Begomovirus , Virus de Plantas , Solanum lycopersicum , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteoma/metabolismo , Enfermedades de las Plantas , Begomovirus/metabolismo , Virus de Plantas/metabolismo
2.
J Cell Sci ; 134(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34569597

RESUMEN

Plants rely on cell surface receptors to integrate developmental and environmental cues into behaviour adapted to the conditions. The largest group of these receptors, leucine-rich repeat receptor-like kinases, form a complex interaction network that is modulated and extended by receptor-like proteins. This raises the question of how specific outputs can be generated when receptor proteins are engaged in a plethora of promiscuous interactions. RECEPTOR-LIKE PROTEIN 44 (RLP44) acts to promote both brassinosteroid and phytosulfokine signalling, which orchestrate diverse cellular responses. However, it is unclear how these activities are coordinated. Here, we show that RLP44 is phosphorylated in its highly conserved cytosolic tail and that this post-translational modification governs its subcellular localization. Whereas phosphorylation is essential for brassinosteroid-associated functions of RLP44, its role in phytosulfokine signalling is not affected by phospho-status. Detailed mutational analysis suggests that phospho-charge, rather than modification of individual amino acids determines routing of RLP44 to its target receptor complexes, providing a framework to understand how a common component of different receptor complexes can get specifically engaged in a particular signalling pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Mol Plant ; 14(6): 963-982, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33711490

RESUMEN

DE-ETIOLATED 1 (DET1) and CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) are two essential repressors of Arabidopsis photomorphogenesis. These proteins can associate with CULLIN4 to form independent CRL4-based E3 ubiquitin ligases that mediate the degradation of several photomorphogenic transcription factors, including ELONGATED HYPOCOTYL 5 (HY5), thereby controlling multiple gene-regulatory networks. Despite extensive biochemical and genetic analyses of their multi-subunit complexes, the functional links between DET1 and COP1 have long remained elusive. Here, we report that DET1 associates with COP1 in vivo, enhances COP1-HY5 interaction, and promotes COP1 destabilization in a process that dampens HY5 protein abundance. By regulating its accumulation, DET1 avoids HY5 association with hundreds of second-site genomic loci, which are also frequently targeted by the skotomorphogenic transcription factor PHYTOCHROME-INTERACTING FACTOR 3. Accordingly, ectopic HY5 chromatin enrichment favors local gene repression and can trigger fusca-like phenotypes. This study therefore shows that DET1-mediated regulation of COP1 stability tunes down the HY5 cistrome, avoiding hyper-photomorphogenic responses that might compromise plant viability.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Luz , Ubiquitina-Proteína Ligasas/genética
5.
Curr Opin Plant Biol ; 56: 56-64, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32464465

RESUMEN

As intracellular parasites, viruses co-opt the molecular machinery of the cells they infect in order to multiply and spread, and the extensiveness and effectiveness of this manipulation ultimately determine the outcome of the interaction between virus and host. Members of the Geminiviridae family, causal agents of devastating diseases in crops, encode only a handful of multifunctional, fast-evolving proteins, which efficiently target host proteins to re-wire plant development and physiology and enable replication and spread of the viral genome. In this review, we offer an overview of the different steps in the geminiviral invasion of the host plant, and explore the knowns and unknowns in geminivirus biology.


Asunto(s)
Geminiviridae , Geminiviridae/genética , Enfermedades de las Plantas , Plantas/genética , Plantas/virología
6.
Viruses ; 11(11)2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683645

RESUMEN

Plant receptor-like kinases (RLKs) exert an essential function in the transduction of signals from the cell exterior to the cell interior, acting as important regulators of plant development and responses to environmental conditions. A growing body of evidence suggests that RLKs may play relevant roles in plant-virus interactions, although the details and diversity of effects and underlying mechanisms remain elusive. The C4 protein from different geminiviruses has been found to interact with RLKs in the CLAVATA 1 (CLV1) clade. However, whether C4 can interact with RLKs in other subfamilies and, if so, what the biological impact of such interactions might be, is currently unknown. In this work, we explore the interaction landscape of C4 from the geminivirus Tomato yellow leaf curl virus within the Arabidopsis RLK family. Our results show that C4 can interact with RLKs from different subfamilies including, but not restricted to, members of the CLV1 clade. Functional analyses of the interaction of C4 with two well-characterized RLKs, FLAGELLIN SENSING 2 (FLS2) and BRASSINOSTEROID INSENSITIVE 1 (BRI1), indicate that C4 might affect some, but not all, RLK-derived outputs. The results presented here offer novel insight on the interface between RLK signaling and the infection by geminiviruses, and point at C4 as a potential broad manipulator of RLK-mediated signaling.


Asunto(s)
Arabidopsis/virología , Begomovirus/metabolismo , Interacciones Microbiota-Huesped , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/metabolismo , Proteínas de Arabidopsis/metabolismo , Geminiviridae/metabolismo , Proteínas de Plantas , Proteínas Quinasas/metabolismo , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 115(46): 11838-11843, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30377268

RESUMEN

Multicellularity arose independently in plants and animals, but invariably requires a robust determination and maintenance of cell fate that is adaptive to the environment. This is exemplified by the highly specialized water- and nutrient-conducting cells of the plant vasculature, the organization of which is already prepatterned close to the stem-cell niche, but can be modified according to extrinsic cues. Here, we show that the hormone receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) is required for root vascular cell-fate maintenance, as BRI1 mutants show ectopic xylem in procambial position. However, this phenotype seems unrelated to canonical brassinosteroid signaling outputs. Instead, BRI1 is required for the expression and function of its interacting partner RECEPTOR-LIKE PROTEIN 44 (RLP44), which, in turn, associates with the receptor for the peptide hormone phytosulfokine (PSK). We show that PSK signaling is required for the maintenance of procambial cell identity and quantitatively controlled by RLP44, which promotes complex formation between the PSK receptor and its coreceptor. Mimicking the loss of RLP44, PSK-related mutants show ectopic xylem in the position of the procambium, whereas rlp44 is rescued by exogenous PSK. Based on these findings, we propose that RLP44 controls cell fate by connecting BRI1 and PSK signaling, providing a mechanistic framework for the dynamic balancing of signaling mediated by the plethora of plant receptor-like kinases at the plasma membrane.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Diferenciación Celular/fisiología , Hormonas Peptídicas/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...