Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Hortic Res ; 8(1): 66, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33790262

RESUMEN

Breeding crops for improved flavor is challenging due to the high cost of sensory evaluation and the difficulty of connecting sensory experience to chemical composition. The main goal of this study was to identify the chemical drivers of sweetness and consumer liking for fresh strawberries (Fragaria × ananassa). Fruit of 148 strawberry samples from cultivars and breeding selections were grown and harvested over seven years and were subjected to both sensory and chemical analyses. Each panel consisted of at least 100 consumers, resulting in more than 15,000 sensory data points per descriptor. Three sugars, two acids and 113 volatile compounds were quantified. Consumer liking was highly associated with sweetness intensity, texture liking, and flavor intensity, but not sourness intensity. Partial least square analyses revealed 20 volatile compounds that increased sweetness perception independently of sugars; 18 volatiles that increased liking independently of sugars; and 15 volatile compounds that had positive effects on both. Machine learning-based predictive models including sugars, acids, and volatiles explained at least 25% more variation in sweetness and liking than models accounting for sugars and acids only. Volatile compounds such as γ-dodecalactone; 5-hepten-2-one, 6-methyl; and multiple medium-chain fatty acid esters may serve as targets for breeding or quality control attributes for strawberry products. A genetic association study identified two loci controlling ester production, both on linkage group 6 A. Co-segregating makers in these regions can be used for increasing multiple esters simultaneously. This study demonstrates a paradigm for improvement of fruit sweetness and flavor in which consumers drive the identification of the most important chemical targets, which in turn drives the discovery of genetic targets for marker-assisted breeding.

3.
PeerJ ; 4: e2220, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547537

RESUMEN

The subfamily Lamioideae (Lamiaceae) comprises ten tribes, of which only Stachydeae and Synandreae include New World members. Previous studies have investigated the phylogenetic relationships among the members of Synandreae based on plastid and nuclear ribosomal DNA loci. In an effort to re-examine the phylogenetic relationships within Synandreae, the current study incorporates data from four low-copy nuclear loci, PHOT1, PHOT2, COR, and PPR. Our results confirm previous studies based on chloroplast and nuclear ribosomal markers in supporting the monophyly of tribe Synandreae, as well as sister relationships between Brazoria and Warnockia, and between that pair of genera and a monophyletic Physostegia. However, we observe incongruence in the relationships of Macbridea and Synandra. The placement of Synandreae within Lamioideae is poorly resolved and incongruent among different analyses, and the sister group of Synandreae remains enigmatic. Comparison of the colonization and migration patterns corroborates a single colonization of the New World by Synandreae during the Late Miocene/Tortonian age. This is in contrast to the only other lamioid tribe that includes New World members, Stachydeae, which colonized the New World at least twice-during the mid-Miocene and Pliocene. Edaphic conditions and intolerance of soil acidity may be factors that restricted the distribution of most genera of Synandreae to southeastern and south-central North America, whereas polyploidy could have increased the colonizing capability of the more wide-ranging genus, Physostegia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...