Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36865320

RESUMEN

During memory formation, the hippocampus is presumed to represent the content of stimuli, but how it does so is unknown. Using computational modelling and human single-neuron recordings, we show that the more precisely hippocampal spiking variability tracks the composite features of each individual stimulus, the better those stimuli are later remembered. We propose that moment-to-moment spiking variability may provide a new window into how the hippocampus constructs memories from the building blocks of our sensory world.

2.
Nat Rev Neurosci ; 24(7): 416-430, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37237103

RESUMEN

The thalamus is a small, bilateral structure in the diencephalon that integrates signals from many areas of the CNS. This critical anatomical position allows the thalamus to influence whole-brain activity and adaptive behaviour. However, traditional research paradigms have struggled to attribute specific functions to the thalamus, and it has remained understudied in the human neuroimaging literature. Recent advances in analytical techniques and increased accessibility to large, high-quality data sets have brought forth a series of studies and findings that (re-)establish the thalamus as a core region of interest in human cognitive neuroscience, a field that otherwise remains cortico-centric. In this Perspective, we argue that using whole-brain neuroimaging approaches to investigate the thalamus and its interaction with the rest of the brain is key for understanding systems-level control of information processing. To this end, we highlight the role of the thalamus in shaping a range of functional signatures, including evoked activity, interregional connectivity, network topology and neuronal variability, both at rest and during the performance of cognitive tasks.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Cognición , Tálamo/fisiología , Neuroimagen , Vías Nerviosas/fisiología
3.
Sci Adv ; 9(5): eabq3851, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36724223

RESUMEN

The human brain operates in large-scale functional networks. These networks are an expression of temporally correlated activity across brain regions, but how global network properties relate to the neural dynamics of individual regions remains incompletely understood. Here, we show that the brain's network architecture is tightly linked to critical episodes of neural regularity, visible as spontaneous "complexity drops" in functional magnetic resonance imaging signals. These episodes closely explain functional connectivity strength between regions, subserve the propagation of neural activity patterns, and reflect interindividual differences in age and behavior. Furthermore, complexity drops define neural activity states that dynamically shape the connectivity strength, topological configuration, and hierarchy of brain networks and comprehensively explain known structure-function relationships within the brain. These findings delineate a principled complexity architecture of neural activity-a human "complexome" that underpins the brain's functional network organization.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Red Nerviosa
4.
Sci Rep ; 12(1): 20957, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470934

RESUMEN

Cognitive functions are well-preserved for some older individuals, but the underlying brain mechanisms remain disputed. Here, 5-year longitudinal 3-back in-scanner and offline data classified individuals in a healthy older sample (baseline age = 64-68 years) into having stable or declining working-memory (WM). Consistent with a vital role of the prefrontal cortex (PFC), WM stability or decline was related to maintained or reduced longitudinal PFC functional responses. Subsequent analyses of imaging markers of general brain maintenance revealed higher levels in the stable WM group on measures of neurotransmission and vascular health. Also, categorical and continuous analyses showed that rate of WM decline was related to global (ventricles) and local (hippocampus) measures of neuronal integrity. Thus, our findings support a role of the PFC as well as general brain maintenance in explaining heterogeneity in longitudinal WM trajectories in aging.


Asunto(s)
Encéfalo , Memoria a Corto Plazo , Humanos , Persona de Mediana Edad , Anciano , Memoria a Corto Plazo/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Mapeo Encefálico , Envejecimiento/fisiología , Imagen por Resonancia Magnética
5.
Biol Psychiatry ; 91(7): 658-666, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34961621

RESUMEN

BACKGROUND: Biomarkers of psychiatric treatment response remain elusive. Functional magnetic resonance imaging (fMRI) has shown promise, but low reliability has limited the utility of typical fMRI measures (e.g., average brain signal) as harbingers of treatment success. Notably, although historically considered a source of noise, temporal brain signal variability continues to gain momentum as a sensitive and reliable indicator of individual differences in neural efficacy, yet has not been examined in relation to psychiatric treatment outcomes. METHODS: A total of 45 patients with social anxiety disorder were scanned twice (11 weeks apart) using simple task-based and resting-state fMRI to capture moment-to-moment neural variability. After fMRI test-retest, patients underwent a 9-week cognitive behavioral therapy. Multivariate modeling and reliability-based cross-validation were used to perform brain-based prediction of treatment outcomes. RESULTS: Task-based brain signal variability was the strongest contributor in a treatment outcome prediction model (total rACTUAL,PREDICTED = 0.77), outperforming self-reports, resting-state neural variability, and standard mean-based measures of neural activity. Notably, task-based brain signal variability showed excellent test-retest reliability (intraclass correlation coefficient = 0.80), even with a task length less than 3 minutes long. CONCLUSIONS: Rather than a source of undesirable noise, moment-to-moment fMRI signal variability may instead serve as a highly reliable and efficient prognostic indicator of clinical outcome.


Asunto(s)
Mapeo Encefálico , Encéfalo , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Resultado del Tratamiento
6.
J Neurosci ; 41(45): 9350-9360, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34732523

RESUMEN

Aging is associated with cognitive impairment, but there are large individual differences in these declines. One neural measure that is lower in older adults and predicts these individual differences is moment-to-moment brain signal variability. Testing the assumption that GABA should heighten neural variability, we examined whether reduced brain signal variability in older, poorer performing adults could be boosted by increasing GABA pharmacologically. Brain signal variability was estimated using fMRI in 20 young and 24 older healthy human adults during placebo and GABA agonist sessions. As expected, older adults exhibited lower signal variability at placebo, and, crucially, GABA agonism boosted older adults' variability to the levels of young adults. Furthermore, poorer performing older adults experienced a greater increase in variability on drug, suggesting that those with more to gain benefit the most from GABA system potentiation. GABA may thus serve as a core neurochemical target in future work on aging- and cognition-related human brain dynamics.SIGNIFICANCE STATEMENT Prior research indicates that moment-to-moment brain signal variability is lower in older, poorer performing adults. We found that this reduced brain signal variability could be boosted through GABA agonism in older adults to the levels of young adults and that this boost was largest in the poorer performing older adults. These results provide the first evidence that brain signal variability can be restored by increasing GABAergic activity and suggest the promise of developing interventions targeting inhibitory systems to help slow cognitive declines in healthy aging.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Moduladores del GABA/farmacología , Lorazepam/farmacología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
7.
Elife ; 102021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34672259

RESUMEN

A hallmark of electrophysiological brain activity is its 1/f-like spectrum - power decreases with increasing frequency. The steepness of this 'roll-off' is approximated by the spectral exponent, which in invasively recorded neural populations reflects the balance of excitatory to inhibitory neural activity (E:I balance). Here, we first establish that the spectral exponent of non-invasive electroencephalography (EEG) recordings is highly sensitive to general (i.e., anaesthesia-driven) changes in E:I balance. Building on the EEG spectral exponent as a viable marker of E:I, we then demonstrate its sensitivity to the focus of selective attention in an EEG experiment during which participants detected targets in simultaneous audio-visual noise. In addition to these endogenous changes in E:I balance, EEG spectral exponents over auditory and visual sensory cortices also tracked auditory and visual stimulus spectral exponents, respectively. Individuals' degree of this selective stimulus-brain coupling in spectral exponents predicted behavioural performance. Our results highlight the rich information contained in 1/f-like neural activity, providing a window into diverse neural processes previously thought to be inaccessible in non-invasive human recordings.


Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Fenómenos Electrofisiológicos/fisiología , Estimulación Acústica , Anestésicos Intravenosos/farmacología , Electroencefalografía , Femenino , Humanos , Ketamina/farmacología , Masculino , Estimulación Luminosa , Propofol/farmacología , Adulto Joven
8.
Sci Rep ; 11(1): 21089, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702857

RESUMEN

Within-person, moment-to-moment, variability in behavior increases with advancing adult age, potentially reflecting the influence of reduced structural and neurochemical brain integrity, especially that of the dopaminergic system. We examined the role of dopamine D2 receptor (D2DR) availability, grey-, and white-matter integrity, for between-person differences in cognitive variability in a large sample of healthy older adults (n = 181; 64-68 years) from the Cognition, Brain, and Aging (COBRA) study. Intra-individual variability (IIV) in cognition was measured as across-trial variability in participants' response times for tasks assessing perceptual speed and working memory, as well as for a control task of motor speed. Across the whole sample, no associations of D2DR availability, or grey- and white-matter integrity, to IIV were observed. However, within-person variability in cognition was increased in two subgroups of individuals displaying low mean-level cognitive performance, one of which was characterized by low subcortical and cortical D2DR availability. In this latter group, fronto-striatal D2DR availability correlated negatively with within-person variability in cognition. This finding suggests that the influence of D2DR availability on cognitive variability may be more easily disclosed among individuals with low dopamine-system integrity, highlighting the benefits of large-scale studies for delineating heterogeneity in brain-behavior associations in older age.


Asunto(s)
Envejecimiento , Cognición , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Memoria a Corto Plazo , Receptores de Dopamina D2/metabolismo , Anciano , Sustancia Gris/metabolismo , Humanos , Persona de Mediana Edad , Sustancia Blanca/metabolismo
9.
Cereb Cortex ; 31(11): 5239-5252, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34297815

RESUMEN

Reduced moment-to-moment blood oxygen level-dependent (BOLD) signal variability has been consistently linked to advanced age and poorer cognitive performance, showing potential as a functional marker of brain aging. To date, however, this promise has rested exclusively on cross-sectional comparisons. In a sample of 74 healthy adults, we provide the first longitudinal evidence linking individual differences in BOLD variability, age, and performance across multiple cognitive domains over an average period of 2.5 years. As expected, those expressing greater loss of BOLD variability also exhibited greater decline in cognition. The fronto-striato-thalamic system emerged as a core neural substrate for these change-change associations. Preservation of signal variability within regions of the fronto-striato-thalamic system also cohered with preservation of functional integration across regions of this system, suggesting that longitudinal maintenance of "local" dynamics may require across-region communication. We therefore propose this neural system as a primary target in future longitudinal studies on the neural substrates of cognitive aging. Given that longitudinal change-change associations between brain and cognition are notoriously difficult to detect, the presence of such an association within a relatively short follow-up period bolsters the promise of brain signal variability as a viable, experimentally sensitive probe for studying individual differences in human cognitive aging.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Adulto , Envejecimiento , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Cognición , Estudios Transversales , Humanos
10.
Nat Commun ; 12(1): 2430, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893294

RESUMEN

Knowledge about the relevance of environmental features can guide stimulus processing. However, it remains unclear how processing is adjusted when feature relevance is uncertain. We hypothesized that (a) heightened uncertainty would shift cortical networks from a rhythmic, selective processing-oriented state toward an asynchronous ("excited") state that boosts sensitivity to all stimulus features, and that (b) the thalamus provides a subcortical nexus for such uncertainty-related shifts. Here, we had young adults attend to varying numbers of task-relevant features during EEG and fMRI acquisition to test these hypotheses. Behavioral modeling and electrophysiological signatures revealed that greater uncertainty lowered the rate of evidence accumulation for individual stimulus features, shifted the cortex from a rhythmic to an asynchronous/excited regime, and heightened neuromodulatory arousal. Crucially, this unified constellation of within-person effects was dominantly reflected in the uncertainty-driven upregulation of thalamic activity. We argue that neuromodulatory processes involving the thalamus play a central role in how the brain modulates neural excitability in the face of momentary uncertainty.


Asunto(s)
Corteza Cerebral/fisiología , Percepción/fisiología , Tálamo/fisiología , Incertidumbre , Adolescente , Adulto , Algoritmos , Corteza Cerebral/diagnóstico por imagen , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Modelos Neurológicos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Tálamo/diagnóstico por imagen , Adulto Joven
11.
Neuron ; 109(5): 751-766, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33596406

RESUMEN

Human and non-human animal behavior is highly malleable and adapts successfully to internal and external demands. Such behavioral success stands in striking contrast to the apparent instability in neural activity (i.e., variability) from which it arises. Here, we summon the considerable evidence across scales, species, and imaging modalities that neural variability represents a key, undervalued dimension for understanding brain-behavior relationships at inter- and intra-individual levels. We believe that only by incorporating a specific focus on variability will the neural foundation of behavior be comprehensively understood.


Asunto(s)
Conducta , Encéfalo/fisiología , Neuronas/fisiología , Animales , Conducta Animal , Interpretación Estadística de Datos , Humanos
12.
Elife ; 92020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32744502

RESUMEN

Adopting particular decision biases allows organisms to tailor their choices to environmental demands. For example, a liberal response strategy pays off when target detection is crucial, whereas a conservative strategy is optimal for avoiding false alarms. Using conventional time-frequency analysis of human electroencephalographic (EEG) activity, we previously showed that bias setting entails adjustment of evidence accumulation in sensory regions (Kloosterman et al., 2019), but the presumed prefrontal signature of a conservative-to-liberal bias shift has remained elusive. Here, we show that a liberal bias shift is reflected in a more unconstrained neural regime (boosted entropy) in frontal regions that is suited to the detection of unpredictable events. Overall EEG variation, spectral power and event-related potentials could not explain this relationship, highlighting that moment-to-moment neural variability uniquely tracks bias shifts. Neural variability modulation through prefrontal cortex appears instrumental for permitting an organism to adapt its biases to environmental demands.


Asunto(s)
Percepción Auditiva , Encéfalo/fisiología , Toma de Decisiones/fisiología , Estimulación Acústica , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Adulto Joven
13.
Cereb Cortex ; 30(12): 6206-6223, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32596710

RESUMEN

Degrading face stimuli reduces face discrimination in both young and older adults, but the brain correlates of this decline in performance are not fully understood. We used functional magnetic resonance imaging to examine the effects of degraded face stimuli on face and nonface brain networks and tested whether these changes would predict the linear declines seen in performance. We found decreased activity in the face network (FN) and a decrease in the similarity of functional connectivity (FC) in the FN across conditions as degradation increased but no effect of age. FC in whole-brain networks also changed with increasing degradation, including increasing FC between the visual network and cognitive control networks. Older adults showed reduced modulation of this whole-brain FC pattern. The strongest predictors of within-participant decline in accuracy were changes in whole-brain network FC and FC similarity of the FN. There was no influence of age on these brain-behavior relations. These results suggest that a systems-level approach beyond the FN is required to understand the brain correlates of performance decline when faces are obscured with noise. In addition, the association between brain and behavior changes was maintained into older age, despite the dampened FC response to face degradation seen in older adults.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Encéfalo/fisiología , Discriminación en Psicología/fisiología , Reconocimiento Facial/fisiología , Adulto , Anciano , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Adulto Joven
14.
PLoS Comput Biol ; 16(5): e1007885, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32392250

RESUMEN

Multiscale Entropy (MSE) is used to characterize the temporal irregularity of neural time series patterns. Due to its' presumed sensitivity to non-linear signal characteristics, MSE is typically considered a complementary measure of brain dynamics to signal variance and spectral power. However, the divergence between these measures is often unclear in application. Furthermore, it is commonly assumed (yet sparingly verified) that entropy estimated at specific time scales reflects signal irregularity at those precise time scales of brain function. We argue that such assumptions are not tenable. Using simulated and empirical electroencephalogram (EEG) data from 47 younger and 52 older adults, we indicate strong and previously underappreciated associations between MSE and spectral power, and highlight how these links preclude traditional interpretations of MSE time scales. Specifically, we show that the typical definition of temporal patterns via "similarity bounds" biases coarse MSE scales-that are thought to reflect slow dynamics-by high-frequency dynamics. Moreover, we demonstrate that entropy at fine time scales-presumed to indicate fast dynamics-is highly sensitive to broadband spectral power, a measure dominated by low-frequency contributions. Jointly, these issues produce counterintuitive reflections of frequency-specific content on MSE time scales. We emphasize the resulting inferential problems in a conceptual replication of cross-sectional age differences at rest, in which scale-specific entropy age effects could be explained by spectral power differences at mismatched temporal scales. Furthermore, we demonstrate how such problems may be alleviated, resulting in the indication of scale-specific age differences in rhythmic irregularity. By controlling for narrowband contributions, we indicate that spontaneous alpha rhythms during eyes open rest transiently reduce broadband signal irregularity. Finally, we recommend best practices that may better permit a valid estimation and interpretation of neural signal irregularity at time scales of interest.


Asunto(s)
Electroencefalografía/métodos , Entropía , Procesamiento de Señales Asistido por Computador , Adulto , Anciano , Humanos
15.
Neuroimage ; 217: 116836, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32283277

RESUMEN

The extent to which brain responses differ across varying cognitive demands is referred to as "neural differentiation," and greater neural differentiation has been associated with better cognitive performance in older adults. An emerging approach has examined within-person neural differentiation using moment-to-moment brain signal variability. A number of studies have found that brain signal variability differs by cognitive state; however, the factors that cause signal variability to rise or fall on a given task remain understudied. We hypothesized that top performers would modulate signal variability according to the complexity of sensory input, upregulating variability when processing more feature-rich stimuli. In the current study, 46 older adults passively viewed face and house stimuli during fMRI. Low-level analyses showed that house images were more feature-rich than faces, and subsequent computational modelling of ventral visual stream responses (HMAX) revealed that houses were more feature-rich especially in V1/V2-like model layers. Notably, we then found that participants exhibiting greater face-to-house upregulation of brain signal variability in V1/V2 (higher for house relative to face stimuli) also exhibited more accurate, faster, and more consistent behavioral performance on a battery of offline visuo-cognitive tasks. Further, control models revealed that face-house modulation of mean brain signal was relatively insensitive to offline cognition, providing further evidence for the importance of brain signal variability for understanding human behavior. We conclude that the ability to align brain signal variability to the richness of perceptual input may mark heightened trait-level behavioral performance in older adults.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología , Anciano , Mapeo Encefálico , Cognición/fisiología , Simulación por Computador , Reconocimiento Facial/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Tiempo de Reacción/fisiología , Corteza Visual/fisiología , Vías Visuales/diagnóstico por imagen , Vías Visuales/fisiología
16.
Cereb Cortex ; 30(3): 942-951, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31318013

RESUMEN

Whether auditory processing of speech relies on reference to the articulatory motor information of speaker remains elusive. Here, we addressed this issue under a two-brain framework. Functional magnetic resonance imaging was applied to record the brain activities of speakers when telling real-life stories and later of listeners when listening to the audio recordings of these stories. Based on between-brain seed-to-voxel correlation analyses, we revealed that neural dynamics in listeners' auditory temporal cortex are temporally coupled with the dynamics in the speaker's larynx/phonation area. Moreover, the coupling response in listener's left auditory temporal cortex follows the hierarchical organization for speech processing, with response lags in A1+, STG/STS, and MTG increasing linearly. Further, listeners showing greater coupling responses understand the speech better. When comprehension fails, such interbrain auditory-articulation coupling vanishes substantially. These findings suggest that a listener's auditory system and a speaker's articulatory system are inherently aligned during naturalistic verbal interaction, and such alignment is associated with high-level information transfer from the speaker to the listener. Our study provides reliable evidence supporting that references to the articulatory motor information of speaker facilitate speech comprehension under a naturalistic scene.


Asunto(s)
Percepción del Habla/fisiología , Habla/fisiología , Lóbulo Temporal/fisiología , Adulto , Anciano , Corteza Auditiva/fisiología , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Adulto Joven
17.
Neuroimage ; 206: 116331, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31712168

RESUMEN

The average power of rhythmic neural responses as captured by MEG/EEG/LFP recordings is a prevalent index of human brain function. Increasing evidence questions the utility of trial-/group averaged power estimates however, as seemingly sustained activity patterns may be brought about by time-varying transient signals in each single trial. Hence, it is crucial to accurately describe the duration and power of rhythmic and arrhythmic neural responses on the single trial-level. However, it is less clear how well this can be achieved in empirical MEG/EEG/LFP recordings. Here, we extend an existing rhythm detection algorithm (extended Better OSCillation detection: "eBOSC"; cf. Whitten et al., 2011) to systematically investigate boundary conditions for estimating neural rhythms at the single-trial level. Using simulations as well as resting and task-based EEG recordings from a micro-longitudinal assessment, we show that alpha rhythms can be successfully captured in single trials with high specificity, but that the quality of single-trial estimates varies greatly between subjects. Despite those signal-to-noise-based limitations, we highlight the utility and potential of rhythm detection with multiple proof-of-concept examples, and discuss implications for single-trial analyses of neural rhythms in electrophysiological recordings. Using an applied example of working memory retention, rhythm detection indicated load-related increases in the duration of frontal theta and posterior alpha rhythms, in addition to a frequency decrease of frontal theta rhythms that was observed exclusively through amplification of rhythmic amplitudes.


Asunto(s)
Ritmo alfa/fisiología , Encéfalo/fisiología , Electroencefalografía/métodos , Memoria a Corto Plazo/fisiología , Procesamiento de Señales Asistido por Computador , Adulto , Algoritmos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Relación Señal-Ruido , Ritmo Teta/fisiología , Adulto Joven
18.
Elife ; 82019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30724733

RESUMEN

Decision bias is traditionally conceptualized as an internal reference against which sensory evidence is compared. Instead, we show that individuals implement decision bias by shifting the rate of sensory evidence accumulation toward a decision bound. Participants performed a target detection task while we recorded EEG. We experimentally manipulated participants' decision criterion for reporting targets using different stimulus-response reward contingencies, inducing either a liberal or a conservative bias. Drift diffusion modeling revealed that a liberal strategy biased sensory evidence accumulation toward target-present choices. Moreover, a liberal bias resulted in stronger midfrontal pre-stimulus 2-6 Hz (theta) power and suppression of pre-stimulus 8-12 Hz (alpha) power in posterior cortex. Alpha suppression in turn was linked to the output activity in visual cortex, as expressed through 59-100 Hz (gamma) power. These findings show that observers can intentionally control cortical excitability to strategically bias evidence accumulation toward the decision bound that maximizes reward.


Asunto(s)
Toma de Decisiones , Sensación , Ritmo alfa/fisiología , Sesgo , Electroencefalografía , Femenino , Humanos , Masculino , Actividad Motora/fisiología , Estimulación Luminosa , Análisis y Desempeño de Tareas , Ritmo Teta/fisiología , Factores de Tiempo , Corteza Visual/fisiología , Adulto Joven
19.
J Neurosci ; 39(3): 537-547, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30478031

RESUMEN

Dopamine (DA) modulates corticostriatal connections. Studies in which imaging of the DA system is integrated with functional imaging during cognitive performance have yielded mixed findings. Some work has shown a link between striatal DA (measured by PET) and fMRI activations, whereas others have failed to observe such a relationship. One possible reason for these discrepant findings is differences in task demands, such that a more demanding task with greater prefrontal activations may yield a stronger association with DA. Moreover, a potential DA-BOLD association may be modulated by task performance. We studied 155 (104 normal-performing and 51 low-performing) healthy older adults (43% females) who underwent fMRI scanning while performing a working memory (WM) n-back task along with DA D2/3 PET assessment using [11C]raclopride. Using multivariate partial-least-squares analysis, we observed a significant pattern revealing positive associations of striatal as well as extrastriatal DA D2/3 receptors to BOLD response in the thalamo-striatal-cortical circuit, which supports WM functioning. Critically, the DA-BOLD association in normal-performing, but not low-performing, individuals was expressed in a load-dependent fashion, with stronger associations during 3-back than 1-/2-back conditions. Moreover, normal-performing adults expressing upregulated BOLD in response to increasing task demands showed a stronger DA-BOLD association during 3-back, whereas low-performing individuals expressed a stronger association during 2-back conditions. This pattern suggests a nonlinear DA-BOLD performance association, with the strongest link at the maximum capacity level. Together, our results suggest that DA may have a stronger impact on functional brain responses during more demanding cognitive tasks.SIGNIFICANCE STATEMENT Dopamine (DA) is a major neuromodulator in the CNS and plays a key role in several cognitive processes via modulating the blood oxygenation level-dependent (BOLD) signal. Some studies have shown a link between DA and BOLD, whereas others have failed to observe such a relationship. A possible reason for the discrepancy is differences in task demands, such that a more demanding task with greater prefrontal activations may yield a stronger association with DA. We examined the relationship of DA to BOLD response during working memory under three load conditions and found that the DA-BOLD association is expressed in a load-dependent fashion. These findings may help explain the disproportionate impairment evident in more effortful cognitive tasks in normal aging and in those suffering dopamine-dependent neurodegenerative diseases (e.g., Parkinson's disease).


Asunto(s)
Memoria a Corto Plazo/fisiología , Receptores de Dopamina D2/fisiología , Receptores de Dopamina D3/fisiología , Anciano , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Antagonistas de Dopamina , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Tomografía de Emisión de Positrones , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Racloprida , Radiofármacos , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/efectos de los fármacos , Receptores de Dopamina D3/metabolismo , Tálamo/fisiología
20.
Neuroimage ; 183: 776-787, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30149140

RESUMEN

Local moment-to-moment variability exists at every level of neural organization, but its driving forces remain opaque. Inspired by animal work demonstrating that local temporal variability may reflect synaptic input rather than locally-generated "noise," we used publicly-available high-temporal-resolution fMRI data (N = 100 adults; 33 males) to test in humans whether greater BOLD signal variability in local brain regions was associated with functional integration (estimated via spatiotemporal PCA dimensionality). Using a multivariate partial least squares analysis, we indeed found that individuals with higher local temporal variability had a more integrated (lower dimensional) network fingerprint. Notably, temporal variability in the thalamus showed the strongest negative association with PCA dimensionality. Previous animal work also shows that local variability may upregulate from thalamus to visual cortex; however, such principled upregulation from thalamus to cortex has not been demonstrated in humans. In the current study, we rather establish a more general putative dynamic role of the thalamus by demonstrating that greater within-person thalamo-cortical upregulation in variability is itself a unique hallmark of greater functional integration that cannot be accounted for by local fluctuations in several other well-known integrative-hub regions. Our findings indicate that local variability primarily reflects functional integration, and establish a fundamental role for the thalamus in how the brain fluctuates and communicates across moments.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Red Nerviosa/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Conjuntos de Datos como Asunto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA