RESUMEN
PURPOSE: To evaluate the safety, tolerability, and pharmacokinetics of BAY 2666605, a velcrin that induces complex formation between the phosphodiesterase PDE3A and the protein Schlafen 12 (SLFN12) leading to a cytotoxic response in cancer cells. PATIENTS AND METHODS: This was a first-in-human phase I study of BAY 2666605 (NCT04809805), an oral, potent first-in-class PDE3A-SLFN12 complex inducer, with reduced PDE3A inhibition. Adults with advanced solid tumors that co-express SLFN12 and PDE3A received BAY 2666605 at escalating doses starting at 5 mg once daily in 28-day cycles. Forty-seven patients were pre-screened for SLFN12 and PDE3A overexpression, and 5 biomarker-positive patients received ≥ 1 BAY 2666605 dose. RESULTS: The most common adverse event was grade 3-4 thrombocytopenia in 3 of the 5 patients treated. The long half-life (> 360 hours) and associated accumulation of BAY 2666605 led to the selection of an alternative schedule consisting of a loading dose with QD maintenance dose. The maximum tolerated dose was not established as the highest doses of both schedules were intolerable. No objective responses were observed. Due to the high expression of PDE3A in platelets compared to tumor tissues, the ex vivo dose-dependent inhibitory effect of BAY 2666605 on megakaryocytes, and the pharmacokinetic profile of the compound, alternative schedules were not predicted to ameliorate the mechanism-based thrombocytopenia. CONCLUSIONS: Despite the decreased PDE3A enzymatic inhibition profile of BAY 2666605, the occurrence of thrombocytopenia in treated patients, an on-target effect of the compound, precluded the achievement of a therapeutic window, consequently leading to trial termination.
RESUMEN
Background: Velcrins are molecular glues that kill cells by inducing the formation of a protein complex between the RNase SLFN12 and the phosphodiesterase PDE3A. Formation of the complex activates SLFN12, which cleaves tRNALeu(TAA) and induces apoptosis. Velcrins such as the clinical investigational compound, BAY 2666605, were found to have activity across multiple solid tumor cell lines from the cancer cell line encyclopedia, including glioblastoma cell lines. We therefore aim to characterize velcrins as novel therapeutic agents in glioblastoma. Materials and Methods: PDE3A and SLFN12 expression levels were measured in glioblastoma cell lines, the Cancer Genome Atlas (TCGA) tumor samples, and tumor neurospheres. Velcrin-treated cells were assayed for viability, induction of apoptosis, cell cycle phases, and global changes in translation. Transcriptional profiling of the cells was obtained. Xenograft-harboring mice treated with velcrins were also monitored for survival. Results: We identified several velcrin-sensitive glioblastoma cell lines and 4 velcrin-sensitive glioblastoma patient-derived models. We determined that BAY 2666605 crosses the blood-brain barrier and elicits full tumor regression in an orthotopic xenograft model of GB1 cells. We also determined that the velcrins BAY 2666605 and BRD3800 induce tumor regression in subcutaneous glioblastoma PDX models. Conclusions: Velcrins have antitumor activity in preclinical models of glioblastoma, warranting further investigation as potential therapeutic agents.
RESUMEN
PURPOSE: Targeted therapies that use the signaling pathways involved in prostate cancer are required to overcome chemoresistance and improve treatment outcomes for men. Molecular chaperones play a key role in the regulation of protein homeostasis and are potential targets for overcoming chemoresistance.Experimental Design: We established 4 chemoresistant prostate cancer cell lines and used image-based high-content siRNA functional screening, based on gene-expression signature, to explore mechanisms of chemoresistance and identify new potential targets with potential roles in taxane resistance. The functional role of a new target was assessed by in vitro and in vivo silencing, and mass spectrometry analysis was used to identify its downstream effectors. RESULTS: We identified FKBP7, a prolyl-peptidyl isomerase overexpressed in docetaxel-resistant and in cabazitaxel-resistant prostate cancer cells. This is the first study to characterize the function of human FKBP7 and explore its role in cancer. We discovered that FKBP7 was upregulated in human prostate cancers and its expression correlated with the recurrence observed in patients receiving docetaxel. FKBP7 silencing showed that FKBP7 is required to maintain the growth of chemoresistant cell lines and chemoresistant tumors in mice. Mass spectrometry analysis revealed that FKBP7 interacts with eIF4G, a component of the eIF4F translation initiation complex, to mediate the survival of chemoresistant cells. Using small-molecule inhibitors of eIF4A, the RNA helicase component of eIF4F, we were able to kill docetaxel- and cabazitaxel-resistant cells. CONCLUSIONS: Targeting FKBP7 or the eIF4G-containing eIF4F translation initiation complex could be novel therapeutic strategies to eradicate taxane-resistant prostate cancer cells.
Asunto(s)
Hidrocarburos Aromáticos con Puentes/farmacología , Proteínas de Unión al Calcio/metabolismo , Resistencia a Antineoplásicos , Factor 4F Eucariótico de Iniciación/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Taxoides/farmacología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Biología Computacional , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica , Silenciador del Gen , Humanos , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Unión Proteica , ARN Interferente Pequeño/genética , Transcriptoma , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PURPOSE: Effective therapy for malignant melanoma, the leading cause of death from skin cancer, remains an area of significant unmet need in oncology. The elevated expression of PKCε in advanced metastatic melanoma results in the increased phosphorylation of the transcription factor ATF2 on threonine 52, which causes its nuclear localization and confers its oncogenic activities. The nuclear-to-mitochondrial translocation of ATF2 following genotoxic stress promotes apoptosis, a function that is largely lost in melanoma cells, due to its confined nuclear localization. Therefore, promoting the nuclear export of ATF2, which sensitizes melanoma cells to apoptosis, represents a novel therapeutic modality. EXPERIMENTAL DESIGN: We conducted a pilot high-throughput screen of 3,800 compounds to identify small molecules that promote melanoma cell death by inducing the cytoplasmic localization of ATF2. The imaging-based ATF2 translocation assay was conducted using UACC903 melanoma cells that stably express doxycycline-inducible GFP-ATF2. RESULTS: We identified two compounds (SBI-0089410 and SBI-0087702) that promoted the cytoplasmic localization of ATF2, reduced cell viability, inhibited colony formation, cell motility, and anchorage-free growth, and increased mitochondrial membrane permeability. SBI-0089410 inhibited the 12-O-tetradecanoylphorbol-l3-acetate (TPA)-induced membrane translocation of protein kinase C (PKC) isoforms, whereas both compounds decreased ATF2 phosphorylation by PKCε and ATF2 transcriptional activity. Overexpression of either constitutively active PKCε or phosphomimic mutant ATF2(T52E) attenuated the cellular effects of the compounds. CONCLUSION: The imaging-based high-throughput screen provides a proof-of-concept for the identification of small molecules that block the oncogenic addiction to PKCε signaling by promoting ATF2 nuclear export, resulting in mitochondrial membrane leakage and melanoma cell death.