Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674117

RESUMEN

Up to 80% of patients under immune checkpoint inhibitors (ICI) face resistance. In this context, stereotactic ablative radiotherapy (SABR) can induce an immune or abscopal response. However, its molecular determinants remain unknown. We present early results of a translational study assessing biomarkers of response to combined ICI and SABR (I-SABR) in liquid biopsy from oligoprogressive patients in a prospective observational multicenter study. Cohort A includes metastatic patients in oligoprogression to ICI maintaining the same ICI due to clinical benefit and who receive concomitant SABR. B is a comparative group of oligometastatic patients receiving only SABR. Blood samples are extracted at baseline (T1), after the first (T2) and last (T3) fraction, two months post-SABR (T4) and at further progression (TP). Response is evaluated by iRECIST and defined by the objective response rate (ORR)-complete and partial responses. We assess peripheral blood mononuclear cells (PBMCs), circulating cell-free DNA (cfDNA) and small RNA from extracellular vesicles. Twenty-seven patients could be analyzed (cohort A: n = 19; B: n = 8). Most were males with non-small cell lung cancer and one progressing lesion. With a median follow-up of 6 months, the last ORR was 63% (26% complete and 37% partial response). A decrease in cfDNA from T2 to T3 correlated with a good response. At T2, CD8+PD1+ and CD8+PDL1+ cells were increased in non-responders and responders, respectively. At T2, 27 microRNAs were differentially expressed. These are potential biomarkers of response to I-SABR in oligoprogressive disease.


Asunto(s)
Biomarcadores de Tumor , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Radiocirugia , Humanos , Masculino , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/radioterapia , Radiocirugia/métodos , Femenino , Anciano , Biomarcadores de Tumor/sangre , Persona de Mediana Edad , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Ácidos Nucleicos Libres de Células/sangre , Estudios Prospectivos , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Anciano de 80 o más Años , Metástasis de la Neoplasia , Progresión de la Enfermedad , Biopsia Líquida/métodos , Leucocitos Mononucleares/metabolismo , Resultado del Tratamiento
2.
Cancers (Basel) ; 15(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37444467

RESUMEN

The present study aimed to investigate the potential of basal cell-free fluorometric DNA (cfDNA) quantification as a prognostic biomarker in advanced non-small cell lung cancer (NSCLC) patients treated with an Immune Checkpoint Blockade (ICB). A discovery and validation cohort of 61 and 31 advanced lung cancer patients treated with ICB were included in this study. Quantification of cfDNA concentration was performed before the start of the treatment and patients were followed up for a median of 34 (30-40) months. The prognostic predicted value of cfDNA was evaluated based on ROC, and Cox regression was conducted via univariate and multivariate analyses to estimate the hazard ratio. We observed that a cfDNA cut-off of 0.55 ng/µL before the ICB determines the overall survival of patients with a log rank p-value of 3.3 × 10-4. That represents median survivals of 3.8 vs. 17.5 months. Similar results were obtained in the validation cohort being the log rank p-value 3.8 × 10-2 with median survivals of 5.9 vs. 24.3. The univariate and multivariate analysis revealed that the cut-off of 0.55 ng/µL before ICB treatment was an independent predictive factor and was significantly associated with a better survival outcome. High cfDNA concentrations identify patients with advanced NSCLC who do not benefit from the ICB. The determination of cfDNA is a simple test that could select a group of patients in whom new therapeutic strategies are needed.

3.
Biomedicines ; 10(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36289681

RESUMEN

Cutaneous melanoma (CM) is the most lethal form of skin cancer if it becomes metastatic, where treatment options and survival chances decrease dramatically. Immunotherapy treatments based on the immunologic checkpoint inhibitors programmed death cell protein 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) constituted a main breakthrough in the treatment of metastatic CM, particularly for the achievement of long-term benefits. Even though it is a very promising therapy, resistance to primary immune checkpoint blockade (ICB) arises in about 70% of CM patients treated with a CTLA-4 inhibitor, and 40-65% of CM patients administered with a PD-1-targeting treatment. Some long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are implicated in triggering pro- and anti-tumorigenic responses to various cancer treatments. The relationship between lncRNAs, circRNAs and ICB immunotherapy has not been explored in cutaneous metastatic melanoma (CMM). The aim of this pilot study is to evaluate the potential role of circRNA and lncRNA expression variability as pre-treatment predictor of the clinical response to immunotherapy in CMM patients. RNA-seq from 12 formalin-fixed paraffin-embedded (FFPE) samples from the metastatic biopsies of CMM patients treated with nivolumab was used to identify response-associated transcripts. Our findings indicate that specific lncRNAs and circRNAs, probably acting as competitive endogenous RNAs (ceRNAs), are involved in the regulatory networks of the immune response against metastatic melanoma that these patients have under treatment with nivolumab. Moreover, we established a risk score that yields predictions of the overall survival (OS) and progression-free survival (PFS) of CMM patients with high accuracy. This proof-of-principle work provides a possible insight into the function of ceRNAs, contributing to efforts to decipher the complex molecular mechanisms of ICB cancer treatment response.

4.
J Adv Res ; 20: 129-139, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31360546

RESUMEN

The in vitro antimicrobial potency of the bacteriocin AS-48 is well documented, but its clinical application requires investigation, as its toxicity could be different in in vitro (haemolytic and antibacterial activity in blood and cytotoxicity towards normal human cell lines) and in vivo (e.g. mice and zebrafish embryos) models. Overall, the results obtained are promising. They reveal the negligible propensity of AS-48 to cause cell death or impede cell growth at therapeutic concentrations (up to 27 µM) and support the suitability of this peptide as a potential therapeutic agent against several microbial infections, due to its selectivity and potency at low concentrations (in the range of 0.3-8.9 µM). In addition, AS-48 exhibits low haemolytic activity in whole blood and does not induce nitrite accumulation in non-stimulated RAW macrophages, indicating a lack of pro-inflammatory effects. The unexpected heightened sensitivity of zebrafish embryos to AS-48 could be due to the low differentiation state of these cells. The low cytotoxicity of AS-48, the absence of lymphocyte proliferation in vivo after skin sensitization in mice, and the lack of toxicity in a murine model support the consideration of the broad spectrum antimicrobial peptide AS-48 as a promising therapeutic agent for the control of a vast array of microbial infections, in particular, those involved in skin and soft tissue diseases.

5.
ACS Synth Biol ; 8(8): 1730-1736, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31348648

RESUMEN

Although not evolved to function in eukaryotes, prokaryotic toxin Kid induces apoptosis in human cells, and this is avoided by coexpression of its neutralizing antitoxin, Kis. Inspired by the way Kid becomes active in bacterial cells we had previously engineered a synthetic toxin-antitoxin system bearing a Kis protein variant that is selectively degraded in cells expressing viral oncoprotein E6, thus achieving highly selective killing of cancer cells transformed by human papillomavirus. Here we aimed to broaden the type of oncogenic insults, and therefore of cancer cells, that can be targeted using this approach. We show that appropriate linkage of the kis gene to a single, fully complementary, target site for an oncogenic human microRNA enables the construction of a synthetic toxin-antitoxin pair that selectively kills cancer cells overexpressing that particular microRNA. Importantly, the resulting system spares nontargeted cells from collateral damage, even when they overexpress highly homologous, though nontargeted, microRNAs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , MicroARNs/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Western Blotting , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Doxiciclina/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/genética , Células HEK293 , Humanos , MicroARNs/genética , Sistemas Toxina-Antitoxina/genética , Sistemas Toxina-Antitoxina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA