Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Neural Syst ; 30(9): 2050045, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32689842

RESUMEN

Visual neuroprosthesis, that provide electrical stimulation along several sites of the human visual system, constitute a potential tool for vision restoration for the blind. Scientific and technological progress in the fields of neural engineering and artificial vision comes with new theories and tools that, along with the dawn of modern artificial intelligence, constitute a promising framework for the further development of neurotechnology. In the framework of the development of a Cortical Visual Neuroprosthesis for the blind (CORTIVIS), we are now facing the challenge of developing not only computationally powerful tools and flexible approaches that will allow us to provide some degree of functional vision to individuals who are profoundly blind. In this work, we propose a general neuroprosthesis framework composed of several task-oriented and visual encoding modules. We address the development and implementation of computational models of the firing rates of retinal ganglion cells and design a tool - Neurolight - that allows these models to be interfaced with intracortical microelectrodes in order to create electrical stimulation patterns that can evoke useful perceptions. In addition, the developed framework allows the deployment of a diverse array of state-of-the-art deep-learning techniques for task-oriented and general image pre-processing, such as semantic segmentation and object detection in our system's pipeline. To the best of our knowledge, this constitutes the first deep-learning-based system designed to directly interface with the visual brain through an intracortical microelectrode array. We implement the complete pipeline, from obtaining a video stream to developing and deploying task-oriented deep-learning models and predictive models of retinal ganglion cells' encoding of visual inputs under the control of a neurostimulation device able to send electrical train pulses to a microelectrode array implanted at the visual cortex.


Asunto(s)
Ceguera/rehabilitación , Corteza Cerebral , Aprendizaje Profundo , Electrocorticografía , Diseño de Equipo , Interpretación de Imagen Asistida por Computador , Modelos Teóricos , Células Ganglionares de la Retina , Diseño de Software , Prótesis Visuales , Humanos
2.
Int J Neural Syst ; 28(10): 1850043, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30556459

RESUMEN

Deep Learning offers flexible powerful tools that have advanced our understanding of the neural coding of neurosensory systems. In this work, a 3D Convolutional Neural Network (3D CNN) is used to mimic the behavior of a population of mice retinal ganglion cells in response to different light patterns. For this purpose, we projected homogeneous RGB flashes and checkerboards stimuli with variable luminances and wavelength spectrum to mimic a more naturalistic stimuli environment onto the mouse retina. We also used white moving bars in order to localize the spatial position of the recorded cells. Then recorded spikes were smoothed with a Gaussian kernel and used as the output target when training a 3D CNN in a supervised way. To find a suitable model, two hyperparameter search stages were performed. In the first stage, a trial and error process allowed us to obtain a system that is able to fit the neurons firing rates. In the second stage, a systematic procedure was used to compare several gradient-based optimizers, loss functions and the model's convolutional layers number. We found that a three layered 3D CNN was able to predict the ganglion cells firing rates with high correlations and low prediction error, as measured with Mean Squared Error and Dynamic Time Warping in test sets. These models were either competitive or outperformed other models used already in neuroscience, as Feed Forward Neural Networks and Linear-Nonlinear models. This methodology allowed us to capture the temporal dynamic response patterns in a robust way, even for neurons with high trial-to-trial variable spontaneous firing rates, when providing the peristimulus time histogram as an output to our model.


Asunto(s)
Potenciales de Acción/fisiología , Luz , Modelos Neurológicos , Células Ganglionares de la Retina/fisiología , Vías Visuales/fisiología , Algoritmos , Animales , Técnicas In Vitro , Ratones , Redes Neurales de la Computación , Estimulación Luminosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...