Asunto(s)
Glomerulonefritis , Inmunohistoquímica , Humanos , Glomerulonefritis/patología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , FibrosisRESUMEN
BACKGROUND: Chronic kidney disease (CKD) is a common complication of a non-kidney solid organ transplant (NKSOT). Identifying predisposing factors is crucial for an early approach and correct referral to nephrology. METHODS: This is a single-center retrospective observational study of a cohort of CKD patients under follow-up in the Nephrology Department between 2010 to 2020. Statistical analysis was performed between all the risk factors and four dependent variables: end-stage renal disease (ESKD); increased serum creatinine ≥50%; renal replacement therapy (RRT); and death in the pre-transplant, peri-transplant, and post-transplant periods. RESULTS: 74 patients were studied (7 heart transplants, 34 liver transplants, and 33 lung transplants). Patients who were not followed-up by a nephrologist in the pre-transplant (p < 0.027) or peri-transplant (p < 0.046) periods and those who had the longest time until an outpatient clinic follow-up (HR 1.032) were associated with a higher risk of creatinine increase ≥50%. Receiving a lung transplant conferred a higher risk than a liver or heart transplant for developing a creatinine increase ≥50% and ESKD. Peri-transplant mechanical ventilation, peri-transplant and post-transplant anticalcineurin overdose, nephrotoxicity, and the number of hospital admissions were significantly associated with a creatinine increase ≥50% and developing ESKD. CONCLUSIONS: Early and close follow-up by a nephrologist was associated with a decrease in the worsening of renal function.
RESUMEN
The optimal dialysate calcium (Ca) concentration for hemodialysis (HD) patients is set at 2.5 mEq/L according to Kidney Disease Outcomes Quality Initiative (K-DOQI) guidelines. This recommendation is opinion-based and could negatively affect secondary hyperparathyroidism. Studies have suggested that a dialysate Ca of 3.0 mEq/L is a compromise between bone protection and cardiovascular risk. The aim of our study was to investigate the effect on bone metabolism parameters after increasing the dialysate Ca concentration from 2.5 to 3.0 mEq/L. The dialysate Ca concentration in our patients was increased from 2.5 to 3.0 mEq/L. Patients with hypercalcemia, normal-high Ca levels with a high Ca-Phosphorus product (Ca x P), excessively suppressed parathyroid hormone (PTH), or a past medical history of calciphylaxis were excluded. Twenty-two patients were studied over 20 weeks. Parathyroid hormone levels decreased significantly (442 +/- 254 vs. 255 +/- 226 pg/mL; p=0.000), without significant changes in serum Ca, P, and Ca x P levels at any sampling point. Better control of secondary hyperparathyroidism allowed us to decrease the paracalcitol dosage in 6 of the 12 patients who had been treated with this drug at the beginning of the study. Other potential factors involved in PTH secretion were not modified. A significant improvement in the rate of patients with 3 or more K-DOQI parameters within the target ranges (8 [36%] vs. 12 [55%]; p=0.026) was observed. In the absence of hypercalcemia or excessively suppressed PTH, an increase from 2.5 mEq to 3.0 mEq/L in dialysate Ca concentration resulted in better control of secondary hyperparathyroidism without affecting Ca, P, and Ca x P levels, thus enabling us to reduce the dosage of vitamin D metabolites.