Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
1.
Pediatr Allergy Immunol ; 35(9): e14226, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39221598

RESUMEN

BACKGROUND: Immunomodulatory proteins in human milk (HM) can shape infant immune development. However, strategies to modulate their levels are currently unknown. This study investigated whether maternal prebiotic supplementation alters the levels of immunomodulatory proteins in HM. METHODS: The study was nested within the SYMBA double-blind randomized controlled trial (ACTRN12615001075572), which investigated the effects of maternal prebiotic (short-chain galacto-oligosaccharides/long-chain fructo-oligosaccharides) supplementation from <21 weeks gestation during pregnancy until 6 months postnatal during lactation on child allergic disease risk. Mother-child dyads receiving prebiotics (n = 46) or placebo (n = 54) were included in this study. We measured the levels of 24 immunomodulatory proteins in HM collected at 2, 4, and 6 months. RESULTS: Cluster analysis showed that the overall immunomodulatory protein composition of milk samples from both groups was similar. At 2 months, HM of prebiotic-supplemented women had decreased levels of TGF-ß1 and TSLP (95% CI: -17.4 [-29.68, -2.28] and -57.32 [-94.22, -4.7] respectively) and increased levels of sCD14 (95% CI: 1.81 [0.17, 3.71]), when compared to the placebo group. At 4 months, IgG1 was lower in the prebiotic group (95% CI: -1.55 [-3.55, -0.12]) compared to placebo group. CONCLUSION: This exploratory study shows that prebiotic consumption by lactating mothers selectively alters specific immunomodulatory proteins in HM. This finding is crucial for understanding how prebiotic dietary recommendations for pregnant and lactating women can modify the immune properties of HM and potentially influence infant health outcomes through immune support from breastfeeding.


Asunto(s)
Suplementos Dietéticos , Leche Humana , Prebióticos , Humanos , Leche Humana/inmunología , Leche Humana/química , Prebióticos/administración & dosificación , Femenino , Método Doble Ciego , Embarazo , Lactante , Adulto , Masculino , Lactancia/inmunología , Oligosacáridos/administración & dosificación , Recién Nacido , Lactancia Materna , Citocinas/metabolismo
2.
Nutrients ; 16(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39275175

RESUMEN

Early-life nutrition significantly impacts vaccination efficacy in infants, whose immune response to vaccines is weaker compared to adults. This study investigated vaccination efficacy in female C57Bl/6JOlaHsd mice (6 weeks old) fed diets with 0.7% galacto-oligosaccharides (GOS)/long-chain fructo-oligosaccharides (lcFOS) (9:1), 0.3% human milk oligosaccharides (HMOS), or a combination (GFH) for 14 days prior to and during vaccination. Delayed-type hypersensitivity (DTH) was measured by assessing ear swelling following an intradermal challenge. Influvac-specific IgG1 and IgG2a levels were assessed using ELISAs, while splenic T and B lymphocytes were analyzed for frequency and activation via flow cytometry. Additionally, cytokine production was evaluated using murine splenocytes co-cultured with influenza-loaded dendritic cells. Mice on the GFH diet showed a significantly enhanced DTH response (p < 0.05), increased serological IgG1 levels, and a significant rise in memory B lymphocytes (CD27+ B220+ CD19+). GFH-fed mice also exhibited more activated splenic Th1 cells (CD69+ CXCR3+ CD4+) and higher IFN-γ production after ex vivo restimulation (p < 0.05). These findings suggest that GOS/lcFOS and HMOS, particularly in combination, enhance vaccine responses by improving memory B cells, IgG production, and Th1 cell activation, supporting the potential use of these prebiotics in infant formula for better early-life immune development.


Asunto(s)
Vacunas contra la Influenza , Ratones Endogámicos C57BL , Leche Humana , Oligosacáridos , Animales , Oligosacáridos/farmacología , Leche Humana/inmunología , Leche Humana/química , Femenino , Vacunas contra la Influenza/inmunología , Humanos , Ratones , Vacunación , Inmunoglobulina G/sangre , Galactosa , Linfocitos B/inmunología , Bazo/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Anticuerpos Antivirales/sangre
3.
J Clin Med ; 13(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39274430

RESUMEN

Background: Quality of life (QoL) is traditionally assessed using multiple-item questionnaires. These can be either general, global assessments of QoL or disease-specific questionnaires. However, the use of single-item QoL scales is becoming increasingly popular, as these are more time- and cost-effective, with a readily available and easy-to-interpret outcome. In particular, these are often preferred for quick assessments (e.g., 'at home' testing and mobile phone assessments), and other cases when time constraints are common (e.g., clinical trials and clinical practice). Previous research revealed that multiple-item questionnaires and single-item assessments of QoL have the same validity and reliability. Here we further evaluate the relationship of QoL, assessed with a single-item QoL scale, with well-being, mood, health correlates (e.g., immune fitness, and having underlying diseases), and lifestyle (e.g., sleep, nutrition). Methods: Data from two online surveys are presented. In Study 1, 100 students participated. The single-item QoL score was compared with the World Health Organization Well-Being Index (WHO-5), a single-item score of sleep quality, the Regensburg Insomnia Scale (RIS) score, and the Healthy Diet Scale (HDS). Study 2 comprised a survey among 1415 Dutch adults. Single-item QoL was evaluated and compared with assessments of mood, health correlates (immune fitness and disease status), and lifestyle factors (e.g., sleep, nutrition, stress). Results: The first study revealed significant correlations between QoL and well-being, sleep quality, insomnia ratings, and attaining a healthy diet. The second study revealed significant correlations between QoL and mood, health status, and lifestyle factors (e.g., the ability to cope with stress). Conclusions: The results presented here demonstrate that the single-item QoL scale is an effective and easy-to-implement assessment tool that can be used in both clinical practice and research.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39173718

RESUMEN

BACKGROUND: Ingestion of prebiotics during pregnancy and lactation may have immunomodulatory benefits for the developing fetal and infant immune system and provide a potential dietary strategy to reduce the risk of allergic diseases. OBJECTIVE: We sought to determine whether maternal supplementation with dietary prebiotics reduces the risk of allergic outcomes in infants with hereditary risk. METHODS: We undertook a double-blind randomized controlled trial in which pregnant women were allocated to consume prebiotics (14.2 g daily of galacto-oligosaccharides and fructo-oligosaccharides in the ratio 9:1) or placebo (8.7 g daily of maltodextrin) powder from less than 21 weeks' gestation until 6 months postnatal during lactation. Eligible women had infants with a first-degree relative with a history of medically diagnosed allergic disease. The primary outcome was medically diagnosed infant eczema by age 1 year, and secondary outcomes included allergen sensitization, food allergy, and recurrent wheeze by age 1 year. RESULTS: A total of 652 women were randomized between June 2016 and November 2021 (329 in the prebiotics group and 323 in the placebo group). There was no significant difference between groups in the percentage of infants with medically diagnosed eczema by age 1 year (prebiotics 31.5% [103 of 327 infants] vs placebo 32.6% [105 of 322 infants]; adjusted relative risk, 0.98; 95% CI, 0.77-1.23; P = .84). Secondary outcomes and safety measures also did not significantly differ between groups. CONCLUSIONS: We found little evidence that maternal prebiotics supplementation during pregnancy and lactation reduces the risk of medically diagnosed infant eczema by age 1 year in infants who are at hereditary risk of allergic disease.

5.
Nutrients ; 16(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125282

RESUMEN

In many parts of the world, goat milk has been part of the human diet for millennia. Allergy to goat's milk, not associated with allergy to cow's milk, is a rare disorder, although some cases have been described. Goat milk proteins have substantial homology with cow's milk proteins and even show cross-reactivity; therefore, they are not advised as an alternative to cow's milk for infants with IgE-mediated cow's milk allergies. However, there are indications that, due to the composition of the goat milk proteins, goat milk proteins show lower allergenicity than cow's milk due to a lower αS1-casein content. For this reason, goat milk might be a better choice over cow's milk as a first source of protein when breastfeeding is not possible or after the breastfeeding period. Additionally, some studies show that goat milk could play a role in specific types of non-IgE-mediated cow milk allergy or even in the prevention of sensitization to cow's milk proteins. This review discusses a possible role of goat milk in non-IgE mediated allergy and the prevention or oral tolerance induction of milk allergy.


Asunto(s)
Cabras , Hipersensibilidad a la Leche , Proteínas de la Leche , Leche , Hipersensibilidad a la Leche/inmunología , Hipersensibilidad a la Leche/prevención & control , Animales , Humanos , Leche/inmunología , Leche/química , Bovinos , Proteínas de la Leche/inmunología , Proteínas de la Leche/efectos adversos , Inmunoglobulina E/inmunología , Lactante , Femenino
6.
Foods ; 13(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38998564

RESUMEN

Immunonutrition, which focuses on specific nutrients in breast milk and post-weaning diets, plays a crucial role in supporting infants' immune system development. This study explored the impact of maternal supplementation with Bifidobacterium breve M-16V and a combination of short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) from pregnancy through lactation, extending into the early childhood of the offspring. The synbiotic supplementation's effects were examined at both mucosal and systemic levels. While the supplementation did not influence their overall growth, water intake, or food consumption, a trophic effect was observed in the small intestine, enhancing its weight, length, width, and microscopic structures. A gene expression analysis indicated a reduction in FcRn and Blimp1 and an increase in Zo1 and Tlr9, suggesting enhanced maturation and barrier function. Intestinal immunoglobulin (Ig) A levels remained unaffected, while cecal IgA levels decreased. The synbiotic supplementation led to an increased abundance of total bacteria and Ig-coated bacteria in the cecum. The abundance of Bifidobacterium increased in both the intestine and cecum. Short-chain fatty acid production decreased in the intestine but increased in the cecum due to the synbiotic supplementation. Systemically, the Ig profiles remained unaffected. In conclusion, maternal synbiotic supplementation during gestation, lactation, and early life is established as a new strategy to improve the maturation and functionality of the gastrointestinal barrier. Additionally, it participates in the microbiota colonization of the gut, leading to a healthier composition.

7.
Front Nutr ; 11: 1371064, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006103

RESUMEN

Introduction: Pulmonary neutrophilia is a hallmark of numerous airway diseases including Chronic Obstructive Pulmonary Disease (COPD), Neutrophilic asthma, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS) and COVID-19. The aim of the current study was to investigate the effect of dietary interventions on lung health in context of pulmonary neutrophilia. Methods: Male BALB/cByJ mice received 7 intra-nasal doses of either a vehicle or lipopolysaccharides (LPS). To study the effect of nutritional interventions they received 16 intra-gastric doses of either a vehicle (PBS) or the following supplements (1) probiotic Bifidobacterium breve (B. breve) M16-V; (2) a prebiotic fiber mixture of short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and low-viscosity pectin in a 9:1:2 ratio (scGOS/lcFOS/lvPectin); and (3) A synbiotic combination B. breve M16-V and scGOS/lcFOS/lvPectin. Parameters for lung health included lung function, lung morphology and lung inflammation. Parameters for systemic immunomodulation included levels of fecal short chain fatty acids and regulatory T cells. Results: The synbiotic supplement protected against the LPS induced decline in lung function (35% improved lung resistance at baseline p = 0.0002 and 25% at peak challenge, p = 0.0002), provided a significant relief from pulmonary neutrophilia (40.7% less neutrophils, p < 0.01) and improved the pulmonary neutrophil-to-lymphocyte ratio (NLR) by 55.3% (p = 0.0033). Supplements did not impact lung morphology in this specific experiment. LPS applied to the upper airways induced less fecal SCFAs production compared to mice that received PBS. The production of acetic acid between day -5 and day 16 was increased in all unchallenged mice (PBS-PBS p = 0.0003; PBS-Pro p < 0.0001; PBS-Pre, p = 0.0045; PBS-Syn, p = 0.0005) which upon LPS challenge was only observed in mice that received the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin (p = 0.0003). A moderate correlation was found for butyric acid and lung function parameters and a weak correlation was found between acetic acid, butyric acid and propionic acid concentrations and NLR. Conclusion: This study suggests bidirectional gut lung cross-talk in a mouse model for pulmonary neutrophilia. Neutrophilic lung inflammation coexisted with attenuated levels of fecal SCFA. The beneficial effects of the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin on lung health associated with enhanced levels of SCFAs.

8.
Front Immunol ; 15: 1418594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975337

RESUMEN

Introduction: Maternal synbiotic supplementation during pregnancy and lactation can significantly influence the immune system. Prebiotics and probiotics have a positive impact on the immune system by preventing or ameliorating among others intestinal disorders. This study focused on the immunomodulatory effects of B. breve M-16V and short chain galacto-oligosaccharides (scGOS)/long chain fructo-oligosachairdes (lcFOS), including systemic and mucosal compartments and milk composition. Methods: Lewis rats were orally administered with the synbiotic or vehicle during pregnancy (21 days) and lactation (21 days). At the weaning day, small intestine (SI), mammary gland (MG), adipose tissue, milk, mesenteric lymph nodes (MLN), salivary gland (SG), feces and cecal content were collected from the mothers. Results: The immunoglobulinome profile showed increased IgG2c in plasma and milk, as well as elevated sIgA in feces at weaning. The supplementation improved lipid metabolism through enhanced brown adipose tissue activity and reinforced the intestinal barrier by increasing the expression of Muc3, Cldn4, and Ocln. The higher production of short chain fatty acids in the cecum and increased Bifidobacterium counts suggest a potential positive impact on the gastrointestinal tract. Discussion: These findings indicate that maternal synbiotic supplementation during gestation and lactation improves their immunological status and improved milk composition.


Asunto(s)
Bifidobacterium breve , Lactancia , Leche , Oligosacáridos , Animales , Femenino , Embarazo , Bifidobacterium breve/inmunología , Leche/inmunología , Leche/química , Ratas , Ratas Endogámicas Lew , Suplementos Dietéticos , Simbióticos/administración & dosificación , Probióticos/administración & dosificación , Probióticos/farmacología
9.
Immunol Res ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083131

RESUMEN

After esophagectomy, an imbalanced inflammatory response increases the risk of postoperative morbidity. The vagus nerve modulates local and systemic inflammatory responses, but its pulmonary branches are transected during esophagectomy as part of the oncological resection, which may account for the high incidence of postoperative (pulmonary) complications. This study investigated the effect of electrical vagus nerve stimulation (VNS) on lipopolysaccharide (LPS)-induced lung injury in rats. Rats (n = 60) were randomly assigned to a non-vagotomy or cervical vagotomy group, with VNS or without (NOSTIM). There were four non-vagotomy groups: NOSTIM and bilateral VNS with 100, 50, or 10 µA. The four vagotomy groups were NOSTIM and VNS with fixed amplitude (50 µA) bilaterally before (VNS-50-before) or after bilateral vagotomy (VNS-50-after), or unilaterally (left) before ipsilateral vagotomy (VNS-50-unilaterally). LPS was administered intratracheally after surgery. Pulmonary function, pro-inflammatory cytokines in serum, broncho-alveolar lavage fluid (BALF), and histopathological lung injury (LIS) were assessed 180 min post-procedure. In non-vagotomized rats, neutrophil influx in BALF following intra-tracheal LPS (mean 30 [± 23]; P = 0.075) and LIS (mean 0.342 [± 0.067]; P = 0.142) were similar after VNS-100, compared with NOSTIM. VNS-50 reduced neutrophil influx (23 [± 19]; P = 0.024) and LIS (0.316 [± 0.093]; P = 0.043). VNS-10 reduced neutrophil influx (15 [± 6]; P = 0.009), while LIS (0.331 [± 0.053]; P = 0.088) was similar. In vagotomized rats, neutrophil influx (52 [± 37]; P = 0.818) and LIS (0.407 [SD ± 0.037]; P = 0.895) in VNS-50-before were similar compared with NOSTIM, as well as in VNS-50-after (neutrophils 30 [± 26]; P = 0.090 and LIS 0.344 [± 0.053]; P = 0.073). In contrast, VNS-50-unilaterally reduced neutrophil influx (26 [± 10]; P = 0.050) and LIS (0.296 [± 0.065]; P = 0.005). Systemic levels of cytokines TNF-α and IL-6 were undetectable in all groups. Pulmonary function was not statistically significantly affected. In conclusion, VNS limited influx of neutrophils in lungs in non-vagotomized rats and may attenuate LIS. Unilateral VNS attenuated lung injury even after ipsilateral vagotomy. This effect was absent for bilateral VNS before and after bilateral vagotomy. It is suggested that the effect of VNS is dependent on (partially) intact vagus nerves and that the level of the vagotomy during esophagectomy may influence postoperative pulmonary outcomes.

10.
Viruses ; 16(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39066194

RESUMEN

The common cold, the flu, and the 2019 coronavirus disease (COVID-19) have many symptoms in common. As such, without testing for severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2), it is difficult to conclude whether or not one is infected with SARS-CoV-2. The aim of the current study was to compare the presence and severity of COVID-19-related symptoms among those who tested positive or negative for the beta variant of SARS-CoV-2 (B.1.351) and identify the clinical presentation with the greatest likelihood of testing positive for SARS-CoV-2. n = 925 individuals that were tested for SARS-CoV-2 at Dutch mass testing sites (i.e., test streets) were invited to complete a short online survey. The presence and severity of 17 COVID-19-related symptoms were assessed. In addition, mood, health correlates, and quality of life were assessed for the week before the test. Of the sample, n = 88 tested positive and n = 837 tested negative for SARS-CoV-2. Individuals who tested positive for SARS-CoV-2 reported experiencing a significantly greater number, as well as greater overall symptom severity, compared to individuals who tested negative for SARS-CoV-2. A binary logistic regression analysis revealed that increased severity levels of congestion, coughing, shivering, or loss of smell were associated with an increase in the odds of testing positive for SARS-CoV-2, whereas an increase in the severity levels of runny nose, sore throat, or fatigue were associated with an increase in the odds of testing negative for SARS-CoV-2. No significant differences in mood or health correlates were found between those who tested positive or negative for SARS-CoV-2, except for a significantly higher stress score among those who tested negative for SARS-CoV-2. In conclusion, individuals that tested positive for SARS-CoV-2 experienced a significantly greater number and more severe COVID-19-related symptoms compared to those who tested negative for SARS-CoV-2. Experiencing shivering and loss of smell may be the best indicators for increased likelihood of testing positive for SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/virología , Masculino , Femenino , Adulto , SARS-CoV-2/aislamiento & purificación , Persona de Mediana Edad , Calidad de Vida , Índice de Severidad de la Enfermedad , Países Bajos/epidemiología , Adulto Joven , Anciano , Encuestas y Cuestionarios , Prueba de COVID-19/métodos , Adolescente , Anosmia/diagnóstico , Anosmia/virología , Tos/virología
11.
Alcohol ; 121: 9-18, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069212

RESUMEN

The alcohol hangover is a combination of negative mental and physical symptoms which can be experienced after a single episode of alcohol consumption, starting when blood alcohol concentration (BAC) approaches zero. A popular theory suggests that dehydration is the primary cause of alcohol hangover and that the consumption of water could alleviate hangover symptoms. Here, the current evidence on the relationship between hangover severity, thirst, and water consumption is summarized. The positive correlations of the amount of water consumed with both hangover severity and thirst suggest that both dehydration and the hangover are co-occurring after-effects of alcohol consumption. While hangovers were typically relatively enduring, dehydration effects were usually mild and short-lasting. Survey data revealed that water consumption during or directly after alcohol consumption had only a modest effect in preventing next-day hangover. Also, the amount of water consumed during hangover was not related to changes of hangover severity and thirst. Thus, water consumption was not effective to alleviate the alcohol hangover. Taken together, these data suggests that alcohol hangover and dehydration are two co-occurring but independent consequences of alcohol consumption.

12.
Nutrients ; 16(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38931246

RESUMEN

Immune system development during gestation and suckling is significantly modulated by maternal environmental and dietary factors. Breastfeeding is widely recognized as the optimal source of nutrition for infant growth and immune maturation, and its composition can be modulated by the maternal diet. In the present work, we investigated whether oral supplementation with Bifidobacterium breve M-16V and short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) to rat dams during gestation and lactation has an impact on the immune system and microbiota composition of the offspring at day 21 of life. On that day, blood, adipose tissue, small intestine (SI), mesenteric lymph nodes (MLN), salivary gland (SG), cecum, and spleen were collected. Synbiotic supplementation did not affect the overall body or organ growth of the pups. The gene expression of Tlr9, Muc2, IgA, and Blimp1 were upregulated in the SI, and the increase in IgA gene expression was further confirmed at the protein level in the gut wash. Synbiotic supplementation also positively impacted the microbiota composition in both the small and large intestines, resulting in higher proportions of Bifidobacterium genus, among others. In addition, there was an increase in butanoic, isobutanoic, and acetic acid concentrations in the cecum but a reduction in the small intestine. At the systemic level, synbiotic supplementation resulted in higher levels of immunoglobulin IgG2c in plasma, SG, and MLN, but it did not modify the main lymphocyte subsets in the spleen and MLN. Overall, synbiotic maternal supplementation is able to positively influence the immune system development and microbiota of the suckling offspring, particularly at the gastrointestinal level.


Asunto(s)
Animales Lactantes , Bifidobacterium breve , Suplementos Dietéticos , Microbioma Gastrointestinal , Oligosacáridos , Simbióticos , Animales , Simbióticos/administración & dosificación , Femenino , Embarazo , Ratas , Fenómenos Fisiologicos Nutricionales Maternos , Lactancia , Sistema Inmunológico , Masculino , Animales Recién Nacidos
13.
Front Pharmacol ; 15: 1388401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694925

RESUMEN

Parkinson's disease (PD) is a complex neurodegenerative disease which is often associated with gastrointestinal (GI) dysfunction. The GI tract is home to a wide range of microorganisms, among which bacteria, that can influence the host through various mechanisms. Products produced by these bacteria can act in the gut but can also exert effects in the brain via what is now well established to be the microbiota-gut-brain axis. In those with PD the gut-bacteria composition is often found to be different to that of non-PD individuals. In addition to compositional changes, the metabolic activity of the gut-microbiota is also changed in PD. Specifically, it is often reported that key producers of short chain fatty acids (SCFAs) as well as the concentration of SCFAs themselves are altered in the stool and blood of those with PD. These SCFAs, among which butyrate, are essential nutrients for the host and are a major energy source for epithelial cells of the GI tract. Additionally, butyrate plays a key role in regulating various host responses particularly in relation to inflammation. Studies have demonstrated that a reduction in butyrate levels can have a critical role in the onset and progression of PD. Furthermore, it has been shown that restoring butyrate levels in those with PD through methods such as probiotics, prebiotics, sodium butyrate supplementation, and fecal transplantation can have a beneficial effect on both motor and non-motor outcomes of the disease. This review presents an overview of evidence for the altered gut-bacteria composition and corresponding metabolite production in those with PD, with a particular focus on the SCFA butyrate. In addition to presenting current studies regarding SCFA in clinical and preclinical reports, evidence for the possibility to target butyrate production using microbiome based approaches in a therapeutic context is discussed.

14.
Exp Mol Pathol ; 137: 104897, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691979

RESUMEN

BACKGROUND: Signaling by toll-like receptors (TLRs) initiates important immune responses against viral infection. The role of TLRs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is not well elucidated. Thus, we investigated the interaction of TLRs agonists and SARS-COV-2 antigens with immune cells in vitro. MATERIAL & METHODS: 30 coronavirus disease 2019 (COVID-19) patients (15 severe and 15 moderate) and 10 age and sex-matched healthy control (HC) were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and activated with TLR3, 7, 8, and 9 agonists, the spike protein (SP) of SARS-CoV-2, and the receptor binding domain (RBD) of SP. Frequencies of CD3+IFN-ß+ T cells, and CD3+IFN-γ+ T cells were evaluated by flow cytometry. Interferon (IFN)-ß gene expression was assessed by qRT-PCR. RESULTS: The frequency of CD3+IFN-ß+ T cells was higher in PBMCs from moderate (p < 0.0001) and severe (p = 0.009) patients at baseline in comparison with HCs. The highest increase in the frequency of CD3+IFN-ß+ T cells in cell from moderate patients was induced by TLR8 agonist and SP (p < 0.0001 for both) when compared to HC, while, the highest increase of the frequency of CD3+IFN-ß+ T cells in sample of severe patients was seen with TLR8 and TLR7 agonists (both p = 0.002). The frequency of CD3+IFN-γ+ T cells was significantly increased upon stimulation with TLR agonists in cell from patients with moderate and severe COVID-19, compared with HC (all p < 0.01), except with TLR7 and TLR8 agonists. The TLR8 agonist did not significantly increase the frequency of CD3+IFN-γ+ T cells in PBMCs of severe patients, but did so in cells from patients with moderate disease (p = 0.01). Moreover, IFN-ß gene expression was significantly upregulated in CD3+T cells from moderate (p < 0.0001) and severe (p = 0.002) COVID-19 patients, compared to HC after stimulation with the TLR8 agonist, while, stimulation of T cells with SP, significantly up-regulated IFN-ß mRNA expression in cells from patients with moderate (p = 0.0003), but not severe disease. CONCLUSION: Stimulation of PBMCs from COVID-19 patients, especially patients with moderate disease, with TLR8 agonist and SP increased the frequency of IFN-ß-producing T cells and IFN-ß gene expression.


Asunto(s)
Complejo CD3 , COVID-19 , SARS-CoV-2 , Linfocitos T , Receptores Toll-Like , Humanos , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Masculino , Femenino , Persona de Mediana Edad , Receptores Toll-Like/agonistas , Receptores Toll-Like/genética , Complejo CD3/inmunología , Complejo CD3/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Adulto , Interferón gamma/metabolismo , Interferón gamma/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Interferón beta/genética , Interferón beta/inmunología , Anciano , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Agonistas de los Receptores Toll-Like
15.
Food Funct ; 15(12): 6488-6501, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38804660

RESUMEN

Mustard seeds belong to the food category of mandatory labelling due to the severe reactions they can trigger in allergic patients. However, the mechanisms underlying allergic sensitization to mustard seeds are poorly understood. The aim of this work is to study type 2 immune activation induced by the mustard seed major allergen Sin a1 via the intestinal mucosa, employing an in vitro model mimicking allergen exposure via the intestinal epithelial cells (IECs). Sin a1 was isolated from the total protein extract and exposed to IEC, monocyte derived dendritic cells (DCs) or IEC/DC co-cultures. A system of consecutive co-cultures was employed to study the generic capacity of Sin a1 to induce type 2 activation leading to sensitization: IEC/DC, DC/T-cell, T/B-cell and stem cell derived mast cells (MCs) derived from healthy donors. Immune profiles were determined by ELISA and flow cytometry. Sin a1 activated IEC and induced type-2 cytokine secretion in IEC/DC co-culture or DC alone (IL-15, IL-25 and TSLP), and primed DC induced type 2 T-cell skewing. IgG secretion in the T-cell/B-cell phase was enhanced in the presence of Sin a1 in the first stages of the co-culture. Anti-IgE did not induce degranulation but promoted IL-13 and IL-4 release by MC primed with the supernatant from B-cells co-cultured with Sin a1-IEC/DC or -DC primed T-cells. Sin a1 enhanced the release of type-2 inflammatory mediators by epithelial and dendritic cells; the latter instructed generic type-2 responses in T-cells that resulted in B-cell activation, and finally MC activation upon anti-IgE exposure. This indicates that via activation of IEC and/or DC, mustard seed allergen Sin a1 is capable of driving type 2 immunity which may lead to allergic sensitization.


Asunto(s)
Alérgenos , Células Dendríticas , Células Epiteliales , Planta de la Mostaza , Semillas , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Humanos , Semillas/química , Alérgenos/inmunología , Células Epiteliales/inmunología , Células Epiteliales/efectos de los fármacos , Mucosa Intestinal/inmunología , Técnicas de Cocultivo , Antígenos de Plantas/inmunología , Mastocitos/inmunología , Mastocitos/efectos de los fármacos , Inmunoglobulina E/inmunología , Citocinas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/farmacología
16.
Brain Behav Immun Health ; 38: 100792, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38737965

RESUMEN

Studies have reported sex and age differences in self-rated health. On average, women rate their health as being poorer compared to men, and older individuals report poorer health than younger individuals. The current study evaluated sex and age differences for self-reported immune fitness, i.e. the capacity of the body to respond to health challenges (such as infections) by activating an appropriate immune response in order to promote health and prevent and resolve disease. Data from different survey studies (N = 8586) were combined for the current analyses. N = 8064 participants (93.3%) completed the single-item scale to assess momentary immune fitness (mean (Standard deviation, SD) age of 32.4 (16.7) years old, range: 18 to 103, 68.0% women) and N = 4263 participants (49.7%) completed the Immune Status Questionnaire (ISQ) to assess past year's immune fitness (mean (SD) age of 40.9 (17.1) years old, range: 18 to 103, 61.1% women). The analyses revealed that women rated their momentary and past year's immune fitness significantly lower than men (p < 0.001). A small but significant decline in momentary immune fitness when aging was found (r = -0.073, p < 0.001). In contrast, past year's immune fitness steadily improved with progressing age (r = 0.295, p < 0.001), and for each age group the difference from the 18-24 years old group was statistically significant (p < 0.001). When using age as covariate, the sex differences in immune fitness remained significant for both momentary immune fitness (p < 0.001) and past year's immune fitness (p < 0.001). In conclusion, women report a poorer momentary and past year's immune fitness than men. The sex effects in immune fitness are robust and seen across all age groups except the elderly. A relative stable momentary immune fitness was found across the age groups. However, past year's immune fitness (assessments with the ISQ) improved with age. This observation may be related to the fact that the studies comprised convenience samples. Therefore, the observed age effects should be interpreted with caution and require further investigation in nationally representative samples.

17.
Am J Clin Nutr ; 120(1): 240-256, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38677518

RESUMEN

Food and nutrition-related factors have the potential to impact development of autism spectrum disorder (ASD) and quality of life for people with ASD, but gaps in evidence exist. On 10 November 2022, Tufts University's Friedman School of Nutrition Science and Policy and Food and Nutrition Innovation Institute hosted a 1-d meeting to explore the evidence and evidence gaps regarding the relationships of food and nutrition with ASD. This meeting report summarizes the presentations and deliberations from the meeting. Topics addressed included prenatal and child dietary intake, the microbiome, obesity, food-related environmental exposures, mechanisms and biological processes linking these factors and ASD, food-related social factors, and data sources for future research. Presentations highlighted evidence for protective associations with prenatal folic acid supplementation and ASD development, increases in risk of ASD with maternal gestational obesity, and the potential for exposure to environmental contaminants in foods and food packaging to influence ASD development. The importance of the maternal and child microbiome in ASD development or ASD-related behaviors in the child was reviewed, as was the role of discrimination in leading to disparities in environmental exposures and psychosocial factors that may influence ASD. The role of child diet and high prevalence of food selectivity in children with ASD and its association with adverse outcomes were also discussed. Priority evidence gaps identified by participants include further clarifying ASD development, including biomarkers and key mechanisms; interactions among psychosocial, social, and biological determinants; interventions addressing diet, supplementation, and the microbiome to prevent and improve quality of life for people with ASD; and mechanisms of action of diet-related factors associated with ASD. Participants developed research proposals to address the priority evidence gaps. The workshop findings serve as a foundation for future prioritization of scientific research to address evidence gaps related to food, nutrition, and ASD.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Trastorno del Espectro Autista/etiología , Femenino , Embarazo , Niño , Dieta , Estado Nutricional , Suplementos Dietéticos , Ácido Fólico/administración & dosificación
18.
Acta Pharmacol Sin ; 45(8): 1591-1603, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38589690

RESUMEN

Autism spectrum disorder (ASD) is a cluster of neurodevelopmental disorders characterized by deficits in communication and behavior. Increasing evidence suggests that the microbiota-gut-brain axis and the likely related immune imbalance may play a role in the development of this disorder. Gastrointestinal deficits and gut microbiota dysfunction have been linked to the development or severity of autistic behavior. Therefore, treatments that focus on specific diets may improve gastrointestinal function and aberrant behavior in individuals with ASD. In this study, we investigated whether a diet containing specific prebiotic fibers, namely, 3% galacto-oligosaccharide/fructo-oligosaccharide (GOS/FOS; 9:1), can mitigate the adverse effects of in utero exposure to valproic acid (VPA) in mice. Pregnant BALB/cByJ dams were injected with VPA (600 mg/kg, sc.) or phosphate-buffered saline (PBS) on gestational day 11 (G11). Male offspring were divided into four groups: (1) in utero PBS-exposed with a control diet, (2) in utero PBS-exposed with GOS/FOS diet, (3) in utero VPA-exposed with a control diet, and (4) in utero VPA-exposed with GOS/FOS diet. Dietary intervention started from birth and continued throughout the duration of the experiment. We showed that the prebiotic diet normalized VPA-induced alterations in male offspring, including restoration of key microbial taxa, intestinal permeability, peripheral immune homeostasis, reduction of neuroinflammation in the cerebellum, and impairments in social behavior and cognition in mice. Overall, our research provides valuable insights into the gut-brain axis involvement in ASD development. In addition, dietary interventions might correct the disbalance in gut microbiota and immune responses and, ultimately, might improve detrimental behavioral outcomes in ASD.


Asunto(s)
Trastorno del Espectro Autista , Conducta Animal , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Ratones Endogámicos BALB C , Prebióticos , Ácido Valproico , Animales , Trastorno del Espectro Autista/inmunología , Prebióticos/administración & dosificación , Femenino , Embarazo , Ratones , Ácido Valproico/administración & dosificación , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inmunología , Eje Cerebro-Intestino/efectos de los fármacos , Eje Cerebro-Intestino/fisiología , Fenotipo , Oligosacáridos/administración & dosificación , Oligosacáridos/farmacología
19.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612871

RESUMEN

Chronic obstructive pulmonary disease (COPD) patients and smokers have a higher incidence of intestinal disorders. The aim of this study was to gain insight into the transcriptomic changes in the lungs and intestines, and the fecal microbial composition after cigarette smoke exposure. Mice were exposed to cigarette smoke and their lung and ileum tissues were analyzed by RNA sequencing. The top 15 differentially expressed genes were investigated in publicly available gene expression datasets of COPD and Crohn's disease (CD) patients. The murine microbiota composition was determined by 16S rRNA sequencing. Increased expression of MMP12, GPNMB, CTSK, CD68, SPP1, CCL22, and ITGAX was found in the lungs of cigarette smoke-exposed mice and COPD patients. Changes in the intestinal expression of CD79B, PAX5, and FCRLA were observed in the ileum of cigarette smoke-exposed mice and CD patients. Furthermore, inflammatory cytokine profiles and adhesion molecules in both the lungs and intestines of cigarette smoke-exposed mice were profoundly changed. An altered intestinal microbiota composition and a reduction in bacterial diversity was observed in cigarette smoke-exposed mice. Altered gene expression in the murine lung was detected after cigarette smoke exposure, which might simulate COPD-like alterations. The transcriptomic changes in the intestine of cigarette smoke-exposed mice had some similarities with those of CD patients and were associated with changes in the intestinal microbiome. Future research could benefit from investigating the specific mechanisms underlying the observed gene expression changes due to cigarette smoke exposure, focusing on identifying potential therapeutic targets for COPD and CD.


Asunto(s)
Fumar Cigarrillos , Enfermedad de Crohn , Microbioma Gastrointestinal , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Enfermedad de Crohn/genética , Fumar Cigarrillos/efectos adversos , ARN Ribosómico 16S , Perfilación de la Expresión Génica , Enfermedad Pulmonar Obstructiva Crónica/genética , Glicoproteínas de Membrana
20.
Adv Healthc Mater ; : e2304569, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625078

RESUMEN

Ever since the implementation of microfluidics in the biomedical field, in vitro models have experienced unprecedented progress that has led to a new generation of highly complex miniaturized cell culture platforms, known as Organs-on-a-Chip (OoC). These devices aim to emulate biologically relevant environments, encompassing perfusion and other mechanical and/or biochemical stimuli, to recapitulate key physiological events. While OoCs excel in simulating diverse organ functions, the integration of the immune organs and immune cells, though recent and challenging, is pivotal for a more comprehensive representation of human physiology. This comprehensive review covers the state of the art in the intricate landscape of immune OoC models, shedding light on the pivotal role of biofabrication technologies in bridging the gap between conceptual design and physiological relevance. The multifaceted aspects of immune cell behavior, crosstalk, and immune responses that are aimed to be replicated within microfluidic environments, emphasizing the need for precise biomimicry are explored. Furthermore, the latest breakthroughs and challenges of biofabrication technologies in immune OoC platforms are described, guiding researchers toward a deeper understanding of immune physiology and the development of more accurate and human predictive models for a.o., immune-related disorders, immune development, immune programming, and immune regulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...