Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
PLoS One ; 8(5): e64646, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717644

RESUMEN

Mushroom-forming fungi produce a wide array of toxic alkaloids. However, evolutionary analyses aimed at exploring the evolution of muscarine, a toxin that stimulates the parasympathetic nervous system, and psilocybin, a hallucinogen, have never been performed. The known taxonomic distribution of muscarine within the Inocybaceae is limited, based only on assays of species from temperate regions of the northern hemisphere. Here, we present a review of muscarine and psilocybin assays performed on species of Inocybaceae during the last fifty years. To supplement these results, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine whether muscarine was present in 30 new samples of Inocybaceae, the majority of which have not been previously assayed or that originated from either the tropics or temperate regions of the southern hemisphere. Our main objective is to test the hypothesis that the presence of muscarine is a shared ancestral feature of the Inocybaceae. In addition, we also test whether species of Inocyabceae that produce psilocybin are monophyletic. Our findings suggest otherwise. Muscarine has evolved independently on several occasions, together with several losses. We also detect at least two independent transitions of muscarine-free lineages to psilocybin-producing states. Although not ancestral for the family as a whole, muscarine is a shared derived trait for an inclusive clade containing three of the seven major lineages of Inocybaceae (the Inocybe, Nothocybe, and Pseudosperma clades), the common ancestor of which may have evolved ca. 60 million years ago. Thus, muscarine represents a conserved trait followed by several recent losses. Transitions to psilocybin from muscarine-producing ancestors occurred more recently between 10-20 million years ago after muscarine loss in two separate lineages. Statistical analyses firmly reject a single origin of muscarine-producing taxa.


Asunto(s)
Agaricales/genética , Evolución Molecular , Muscarina/genética , Psilocibina/genética , Animales , Cuerpos Fructíferos de los Hongos/genética , Especiación Genética , Humanos , Muscarina/metabolismo , Filogenia , Psilocibina/metabolismo , Análisis de Secuencia de ADN
3.
Forensic Sci Int ; 178(2-3): 162-70, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18455334

RESUMEN

The psychoactive properties of N,N-dimethyltryptamine (DMT) 1a are known to induce altered states of consciousness in humans. This particular attribute attracts great interest from a variety of scientific and also clandestine communities. Our recent research has confirmed that DMT reacts with dichloromethane (DCM), either as a result of work-up or storage to give a quaternary N-chloromethyl ammonium salt 2a. Furthermore, this was observed to undergo rearrangement during analysis using gas chromatography-mass spectrometry (GC-MS) with products including 3-(2-chloroethyl)indole 3 and 2-methyltetrahydro-beta-carboline 4 (2-Me-THBC). This study further investigates this so far unexplored area of solvent interactions by the exposure of DMT to other halogenated solvents including dibromomethane and 1,2-dichloroethane (DCE). The N-bromomethyl- and N-chloroethyl quaternary ammonium derivatives were subsequently characterised by ion trap GC-MS in electron and chemical ionisation tandem MS mode and by NMR spectroscopy. The DCE-derived derivative formed at least six rearrangement products in the total ion chromatogram. Identification of mass spectrometry generated by-products was verified by conventional or microwave-accelerated synthesis. The use of deuterated DCM and deuterated DMT 1b provided insights into the mechanism of the rearrangements. The presence of potentially characteristic marker molecules may allow the identification of solvents used during the manufacture of controlled substances, which is often neglected since these are considered inert.

4.
Planta Med ; 72(7): 665-6, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16673333

RESUMEN

The hallucinogenic mushroom Inocybe aeruginascens contains several typical Psilocybe alkaloids including psilocybin. We have now elucidated the structure of a further indole derivative named aeruginascin as the quaternary ammonium compound N, N, N-trimethyl-4-phosphoryloxytryptamine. Aeruginascin is closely related to the frog skin toxin bufotenidine (5-HTQ), a potent 5-HT3 receptor agonist, and has been found exclusively in Inocybe aeruginascens so far.


Asunto(s)
Agaricales/química , Compuestos Organofosforados/química , Compuestos Organofosforados/aislamiento & purificación , Triptaminas/química , Triptaminas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...