Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220124, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37305910

RESUMEN

Macrophage (Mϕ)-lineage cells are integral to the immune defences of all vertebrates, including amphibians. Across vertebrates, Mϕ differentiation and functionality depend on activation of the colony stimulating factor-1 (CSF1) receptor by CSF1 and interluekin-34 (IL34) cytokines. Our findings to date indicate that amphibian (Xenopus laevis) Mϕs differentiated with CSF1 and IL34 are morphologically, transcriptionally and functionally distinct. Notably, mammalian Mϕs share common progenitor population(s) with dendritic cells (DCs), which rely on fms-like tyrosine kinase 3 ligand (FLT3L) for differentiation while X. laevis IL34-Mϕs exhibit many features attributed to mammalian DCs. Presently, we compared X. laevis CSF1- and IL34-Mϕs with FLT3L-derived X. laevis DCs. Our transcriptional and functional analyses indicated that indeed the frog IL34-Mϕs and FLT3L-DCs possessed many commonalities over CSF1-Mϕs, including transcriptional profiles and functional capacities. Compared to X. laevis CSF1-Mϕs, the IL34-Mϕs and FLT3L-DCs possess greater surface major histocompatibility complex (MHC) class I, but not MHC class II expression, were better at eliciting mixed leucocyte responses in vitro and generating in vivo re-exposure immune responses against Mycobacterium marinum. Further analyses of non-mammalian myelopoiesis akin to those described here, will grant unique perspectives into the evolutionarily retained and diverged pathways of Mϕ and DC functional differentiation. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Asunto(s)
Anuros , Células Mieloides , Animales , Xenopus laevis , Macrófagos , Leucocitos , Mamíferos
2.
Dev Comp Immunol ; 140: 104623, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36563918

RESUMEN

Granulocyte-lineage cells are important innate immune effectors across all vertebrates. Named for conspicuous secretory granules, granulocytes have historically been studied for their antimicrobial roles. Although versions of these cells are found in all vertebrate species examined to date, disparate environmental and physiological pressures acting on distinct vertebrate classes have shaped many of the facets dictating granulocyte biology. Immune pressures further determine granulopoietic constraints, ultimately governing granulocyte functions. For amphibians that inhabit pathogen-rich aquatic environments for some or all their lives, their unique granulocyte biologies satisfy many of their antimicrobial needs. Amphibians also occupy an intermediate position in the evolution of vertebrate immune systems, using combinations of primitive (e.g., subcapsular liver) and more recently evolved (e.g., bone marrow) tissue sites for hematopoiesis and specifically, granulopoiesis. The last decade of research has revealed vertebrate granulocytes in general, and amphibian granulocytes in particular, are more complex than originally assumed. With dynamic leukocyte phenotypes, granulocyte-lineage cells are being acknowledged for their multifaceted roles beyond immunity in other physiological processes. Here we provide an overview of granulopoiesis in amphibians, highlight key differences in these processes compared to higher vertebrates, and identify open questions.


Asunto(s)
Granulocitos , Hematopoyesis , Animales , Granulocitos/fisiología , Hematopoyesis/fisiología , Anfibios , Biología
3.
Sci Rep ; 11(1): 6915, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767285

RESUMEN

Understanding relationships between physical drivers and biological response is central to advancing ecological knowledge. Wind is the physical forcing mechanism in coastal upwelling systems, however lags between wind input and biological responses are seldom quantified for marine predators. Lags were examined between wind at an upwelling source, decreased temperatures along the upwelling plume's trajectory, and blue whale occurrence in New Zealand's South Taranaki Bight region (STB). Wind speed and sea surface temperature (SST) were extracted for austral spring-summer months between 2009 and 2019. A hydrophone recorded blue whale vocalizations October 2016-March 2017. Timeseries cross-correlation analyses were conducted between wind speed, SST at different locations along the upwelling plume, and blue whale downswept vocalizations (D calls). Results document increasing lag times (0-2 weeks) between wind speed and SST consistent with the spatial progression of upwelling, culminating with increased D call density at the distal end of the plume three weeks after increased wind speeds at the upwelling source. Lag between wind events and blue whale aggregations (n = 34 aggregations 2013-2019) was 2.09 ± 0.43 weeks. Variation in lag was significantly related to the amount of wind over the preceding 30 days, which likely influences stratification. This study enhances knowledge of physical-biological coupling in upwelling ecosystems and enables improved forecasting of species distribution patterns for dynamic management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...