Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38044467

RESUMEN

English learners (ELs) are a rapidly growing population in schools in the United States with limited experience and proficiency in English. To better understand the path for EL's academic success in school, it is important to understand how EL's brain systems are used for academic learning in English. We studied, in a cohort of Hispanic middle-schoolers (n = 45, 22F) with limited English proficiency and a wide range of reading and math abilities, brain network properties related to academic abilities. We applied a method for localizing brain regions of interest (ROIs) that are group-constrained, yet individually specific, to test how resting state functional connectivity between regions that are important for academic learning (reading, math, and cognitive control regions) are related to academic abilities. ROIs were selected from task localizers probing reading and math skills in the same participants. We found that connectivity across all ROIs, as well as connectivity of just the cognitive control ROIs, were positively related to measures of reading skills but not math skills. This work suggests that cognitive control brain systems have a central role for reading in ELs. Our results also indicate that an individualized approach for localizing brain function may clarify brain-behavior relationships.


Asunto(s)
Encéfalo , Instituciones Académicas , Humanos , Encéfalo/diagnóstico por imagen , Lectura
2.
Cell Rep ; 42(5): 112521, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37200192

RESUMEN

During childhood, neural systems supporting high-level cognitive processes undergo periods of rapid growth and refinement, which rely on the successful coordination of activation across the brain. Some coordination occurs via cortical hubs-brain regions that coactivate with functional networks other than their own. Adult cortical hubs map into three distinct profiles, but less is known about hub categories during development, when critical improvement in cognition occurs. We identify four distinct hub categories in a large youth sample (n = 567, ages 8.5-17.2), each exhibiting more diverse connectivity profiles than adults. Youth hubs integrating control-sensory processing split into two distinct categories (visual control and auditory/motor control), whereas adult hubs unite under one. This split suggests a need for segregating sensory stimuli while functional networks are experiencing rapid development. Functional coactivation strength for youth control-processing hubs are associated with task performance, suggesting a specialized role in routing sensory information to and from the brain's control system.


Asunto(s)
Imagen por Resonancia Magnética , Red Nerviosa , Adulto , Humanos , Adolescente , Vías Nerviosas/fisiología , Red Nerviosa/fisiología , Encéfalo/fisiología , Mapeo Encefálico
3.
Mind Brain Educ ; 17(2): 149-160, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38770227

RESUMEN

English Learners (ELs), students from non-English-speaking backgrounds, are a fast-growing, understudied, group of students in the U.S. with unique learning challenges. Cognitive flexibility-the ability to switch between task demands with ease-may be an important factor in learning for ELs as they have to manage learning in their non-dominant language and access knowledge in multiple languages. We used functional MRI to measure cognitive flexibility brain activity in a group of Hispanic middle school ELs (N = 63) and related it to their academic skills. We found that brain engagement during the cognitive flexibility task was related to both out-of-scanner reading and math measures. These relationships were observed across the brain, including in cognitive control, attention, and default mode networks. This work suggests the real-world importance of cognitive flexibility for adolescent ELs, where individual differences in brain engagement were associated with educational outcomes.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36312216

RESUMEN

Cognitive neuroimaging researchers' ability to infer accurate statistical conclusions from neuroimaging depends greatly on the quality of the data analyzed. This need for quality control is never more evident than when conducting neuroimaging studies with children and adolescents. Developmental neuroimaging requires patience, flexibility, adaptability, extra time, and effort. It also provides us a unique, non-invasive way to understand the development of cognitive processes, individual differences, and the changing relations between brain and behavior over the lifespan. In this discussion, we focus on collecting magnetic resonance imaging (MRI) data, as it is one of the more complex protocols used with children and youth. Through our extensive experience collecting MRI datasets with children and families, as well as a review of current best practices, we will cover three main topics to help neuroimaging researchers collect high-quality datasets. First, we review key recruitment and retention techniques, and note the importance for consistency and inclusion across groups. Second, we discuss ways to reduce scan anxiety for families and ways to increase scan success by describing the pre-screening process, use of a scanner simulator, and the need to focus on participant and family comfort. Finally, we outline several important design considerations in developmental neuroimaging such as asking a developmentally appropriate question, minimizing data loss, and the applicability of public datasets. Altogether, we hope this article serves as a useful tool for those wishing to enter or learn more about developmental cognitive neuroscience.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...