Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Children (Basel) ; 7(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348647

RESUMEN

The prevalence of childhood obesity has increased over the years in the United States and contributed to a rise in metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Animal studies suggested the role of histamine blockade on mesenteric lymphatics tone, contributing to weight gain and hepatic steatosis. This study aimed to investigate an association between antihistamines (AH) use in children and obesity. A single-center retrospective cohort study on children with a diagnosis of NAFLD, followed in the gastroenterology clinic, was performed between January 2018 and April 2019. The demographics, medications, and body mass index (BMI) were assessed. Participants were divided into an AH group with documented use and comparison group, antihistamine naïve. Of the 32 participants in the study, 13 used AH, and 19 did not. Antihistamine users had a mean increase in BMI percentile per year of 1.17 compared to a decrease of 0.06 in comparison group (p = 0.0008). AH usage correlated with a mean increase in BMI z-score of 0.23 per year, as opposed to a decrease by 0.012 in comparison group (p = 0.0016). No difference was found in triglycerides (TG), glucose, and liver enzymes. AH use increases BMI percentiles and z-scores over time and is associated with obesity in children.

2.
Front Immunol ; 11: 1234, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625213

RESUMEN

Mast cells (MCs) are abundant in almost all vascularized tissues. Furthermore, their anatomical proximity to lymphatic vessels and their ability to synthesize, store and release a large array of inflammatory and vasoactive mediators emphasize their significance in the regulation of the lymphatic vascular functions. As a major secretory cell of the innate immune system, MCs maintain their steady-state granule release under normal physiological conditions; however, the inflammatory response potentiates their ability to synthesize and secrete these mediators. Activation of MCs in response to inflammatory signals can trigger adaptive immune responses by dendritic cell-directed T cell activation. In addition, through the secretion of various mediators, cytokines and growth factors, MCs not only facilitate interaction and migration of immune cells, but also influence lymphatic permeability, contractility, and vascular remodeling as well as immune cell trafficking through the lymphatic vessels. In summary, the consequences of these events directly affect the lymphatic niche, influencing inflammation at multiple levels. In this review, we have summarized the recent advancements in our understanding of the MC biology in the context of the lymphatic vascular system. We have further highlighted the MC-lymphatic interaction axis from the standpoint of the tumor microenvironment.


Asunto(s)
Inmunomodulación , Sistema Linfático/fisiología , Mastocitos/inmunología , Mastocitos/metabolismo , Plasticidad de la Célula/inmunología , Susceptibilidad a Enfermedades , Homeostasis , Humanos , Inflamación/etiología , Inflamación/metabolismo , Vasos Linfáticos/fisiología , Neoplasias/etiología , Neoplasias/metabolismo , Especificidad de Órganos/inmunología
3.
Am J Physiol Regul Integr Comp Physiol ; 318(3): R590-R604, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31913658

RESUMEN

Lymphatic vessels play a critical role in mounting a proper immune response by trafficking peripheral immune cells to draining lymph nodes. Mast cells (MCs) are well known for their roles in type I hypersensitivity reactions, but little is known about their secretory regulation in the lymphatic niche. MCs, as innate sensor and effector cells, reside close to mesenteric lymphatic vessels (MLVs), and their activation and ability to release histamine influences the lymphatic microenvironment in a histamine-NF-κB-dependent manner. Using an established experimental protocol involving surgical isolation of rat mesenteric tissue segments, including MLVs and surrounding perilymphatic tissues, we tested the hypothesis that perilymphatic mesenteric MCs possess histamine receptors (HRs) that bind and respond to the histamine released from these same MCs. Under various experimental conditions, including inflammatory stimulation by LPS, we measured histamine in mesenteric perilymphatic tissues, evaluated expression of histidine decarboxylase in MCs along with the degree of MC degranulation, assessed the functional status of HRs in MCs, and evaluated the ability of histamine itself to induce MC activation. Finally, we evaluated the importance of MCs and HR1 and -2 for MLV-directed trafficking of CD11b/c-positive cells during acute tissue inflammation. Our data indicate the existence of a functionally potent MC-histamine autocrine regulatory loop, the elements of which are crucially important for acute inflammation-induced trafficking of the CD11b/c-positive cells toward MLVs. This MC-histamine loop serves as a first-line cellular servo control system, playing a key role in the innate and adaptive immune response as well as NF-κB-mediated maintenance of body homeostasis.


Asunto(s)
Comunicación Autocrina/fisiología , Inflamación/metabolismo , Mastocitos/metabolismo , Mesenterio/metabolismo , Animales , Histamina/farmacología , Homeostasis/fisiología , Inflamación/fisiopatología , Vasos Linfáticos/metabolismo , Masculino , FN-kappa B/metabolismo , Ratas Sprague-Dawley
4.
Hepatology ; 71(3): 990-1008, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31344280

RESUMEN

BACKGROUND AND AIMS: Serotonin (5HT) is a neuroendocrine hormone synthetized in the central nervous system (CNS) as well as enterochromaffin cells of the gastrointestinal tract. Tryptophan hydroxylase (TPH1) and monoamine oxidase (MAO-A) are the key enzymes for the synthesis and catabolism of 5HT, respectively. Previous studies demonstrated that 5-hydroxytryptamine receptor (5HTR)1A/1B receptor agonists inhibit biliary hyperplasia in bile-duct ligated (BDL) rats, whereas 5HTR2B receptor antagonists attenuate liver fibrosis (LF) in mice. Our aim was to evaluate the role of 5HTR2A/2B/2C agonists/antagonists in cholestatic models. APPROACH AND RESULTS: While in vivo studies were performed in BDL rats and the multidrug resistance gene 2 knockout (Mdr2-/- ) mouse model of PSC, in vitro studies were performed in cell lines of cholangiocytes and hepatic stellate cells (HSCs). 5HTR2A/2B/2C and MAO-A/TPH1 are expressed in cholangiocytes and HSCs from BDL rats and Mdr2-/- - mice. Ductular reaction, LF, as well as the mRNA expression of proinflammatory genes increased in normal, BDL rats, and Mdr2-/- - mice following treatment 5HTR2A/2B/2C agonists, but decreased when BDL rats and Mdr2-/- mice were treated with 5HTR2A/2B/2C antagonists compared to BDL rats and Mdr2-/- mice, respectively. 5HT levels increase in Mdr2-/- mice and in PSC human patients compared to their controls and decrease in serum of Mdr2-/- mice treated with 5HTR2A/2B/2C antagonists compared to untreated Mdr2-/- mice. In vitro, cell lines of murine cholangiocytes and human HSCs express 5HTR2A/2B/2C and MAO-A/TPH1; treatment of these cell lines with 5HTR2A/2B/2C antagonists or TPH1 inhibitor decreased 5HT levels as well as expression of fibrosis and inflammation genes compared to controls. CONCLUSIONS: Modulation of the TPH1/MAO-A/5HT/5HTR2A/2B/2C axis may represent a therapeutic approach for management of cholangiopathies, including PSC.


Asunto(s)
Conductos Biliares/patología , Colestasis/patología , Cirrosis Hepática/etiología , Monoaminooxidasa/fisiología , Receptores de Serotonina/fisiología , Serotonina/fisiología , Triptófano Hidroxilasa/fisiología , Subfamilia B de Transportador de Casetes de Unión a ATP/fisiología , Animales , Proliferación Celular , Colangitis Esclerosante/etiología , Humanos , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A/fisiología , Receptor de Serotonina 5-HT2B/fisiología , Receptor de Serotonina 5-HT2C/fisiología , Serotonina/sangre , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
5.
J Immunol ; 203(8): 2339-2350, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31519866

RESUMEN

Unlike the blood, the interstitial fluid and the deriving lymph are directly bathing the cellular layer of each organ. As such, composition analysis of the lymphatic fluid can provide more precise biochemical and cellular information on an organ's health and be a valuable resource for biomarker discovery. In this study, we describe a protocol for cannulation of mouse and rat lymphatic collectors that is suitable for the following: the "omic" sampling of pre- and postnodal lymph, collected from different anatomical districts; the phenotyping of immune cells circulating between parenchymal organs and draining lymph nodes; injection of known amounts of molecules for quantitative immunological studies of nodal trafficking and/or clearance; and monitoring an organ's biochemical omic changes in pathological conditions. Our data indicate that probing the lymphatic fluid can provide an accurate snapshot of an organ's physiology/pathology, making it an ideal target for liquid biopsy.


Asunto(s)
Cateterismo , Ganglios Linfáticos/inmunología , Linfa/inmunología , Vasos Linfáticos/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
6.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G217-G227, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30475062

RESUMEN

This study aimed to establish mechanistic links between the prolonged intake of desloratadine, a common H1 receptor blocker (i.e., antihistamine), and development of obesity and metabolic syndrome. Male Sprague-Dawley rats were treated for 16 wk with desloratadine. We analyzed the dynamics of body weight gain, tissue fat accumulation/density, contractility of isolated mesenteric lymphatic vessels, and levels of blood lipids, glucose, and insulin, together with parameters of liver function. Prolonged intake of desloratadine induced development of an obesity-like phenotype and signs of metabolic syndrome. These alterations in the body included excessive weight gain, increased density of abdominal subcutaneous fat and intracapsular brown fat, high blood triglycerides with an indication of their rerouting toward portal blood, high HDL, high fasting blood glucose with normal fasting and nonfasting insulin levels (insulin resistance), high liver/body weight ratio, and liver steatosis (fatty liver). These changes were associated with dysfunction of mesenteric lymphatic vessels, specifically high lymphatic tone and resistance to flow together with diminished tonic and abolished phasic responses to increases in flow, (i.e., greatly diminished adaptive reserves to respond to postprandial increases in lymph flow). The role of nitric oxide in this flow-dependent adaptation was abolished, with remnants of these responses controlled by lymphatic vessel-derived histamine. Our current data, considered together with reports in the literature, support the notion that millions of the United States population are highly likely affected by underevaluated, lymphatic-related side effects of antihistamines and may develop obesity and metabolic syndrome due to the prolonged intake of this medication. NEW & NOTEWORTHY Prolonged intake of desloratadine induced development of obesity and metabolic syndrome associated with dysfunction of mesenteric lymphatic vessels, high lymphatic tone, and resistance to flow together with greatly diminished adaptive reserves to respond to postprandial increases in lymph flow. Data support the notion that millions of the USA population are highly likely affected by underevaluated, lymphatic-related side effects of antihistamines and may develop obesity and metabolic syndrome due to the prolonged intake of this medication.


Asunto(s)
Hígado Graso/tratamiento farmacológico , Loratadina/análogos & derivados , Vasos Linfáticos/efectos de los fármacos , Síndrome Metabólico/etiología , Obesidad/etiología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Hígado Graso/complicaciones , Resistencia a la Insulina/fisiología , Lípidos/sangre , Loratadina/farmacología , Vasos Linfáticos/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Aumento de Peso/efectos de los fármacos
7.
Sci Rep ; 8(1): 11253, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30050160

RESUMEN

Transport of tissue-derived lymphatic fluid and clearance by draining lymph nodes are pivotal for maintenance of fluid homeostasis in the body and for immune-surveillance of the self- and non-self-proteomes. Yet a quantitative analysis of nodal filtration of the tissue-derived proteome present in lymphatic fluid has not been reported. Here we quantified the efficiency of nodal clearance of the composite proteomic load using label-free and isotope-labeling proteomic analysis of pre-nodal and post-nodal samples collected by direct cannulation. These results were extended by quantitation of the filtration efficiency of fluorophore-labeled proteins, bacteria, and beads infused at physiological flow rates into pre-nodal lymphatic collectors and collected by post-nodal cannulation. We developed a linear model of nodal filtration efficiency dependent on pre-nodal protein concentrations and molecular weight, and uncovered criteria for disposing the proteome incoming from defined anatomical districts under physiological conditions. These findings are pivotal to understanding the maximal antigenic load sustainable by a draining node, and promote understanding of pathogen spreading and nodal filtration of tumor metastasis, potentially helping to improve design of vaccination protocols, immunization strategies and drug delivery.


Asunto(s)
Bacterias/inmunología , Ganglios Linfáticos/inmunología , Linfa/química , Proteoma/análisis , Animales , Técnicas Bacteriológicas , Masculino , Modelos Teóricos , Proteómica , Ratas Sprague-Dawley
8.
Lymphat Res Biol ; 15(4): 324-330, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29252139

RESUMEN

BACKGROUND: The initial periods of increased flow inside lymphatic vessels demonstrate specific temporary patterns of self-tuning of lymphatic vessel contractility that are heterogeneous across regional lymphatic networks. The current literature primarily refers to the immediate and fast reactions of the lymphangions to increases in basal flow. Until now, there were no available data on how the lymphatic vessels react to comparatively longer periods of imposed flow. METHODS AND RESULTS: In this study, we measured and analyzed the contractility of the rat thoracic duct segments, isolated, cannulated, and pressurized at 3 cm H2O at no imposed flow conditions and during 4 hours of imposed flow (constant transaxial pressure gradient of 2 cm H2O). We found the development of a progressing lymphatic tonic relaxation and inhibition of the lymphatic contraction frequency over 4 hours of imposed flow. After a short initial decrease, lymphatic phasic contraction amplitude rose significantly during the first hour of imposed flow, and it demonstrated a trend to return toward control levels after 3 hours of imposed flow. As a result, the fractional pump flow (active lymph pumping per minute) of isolated thoracic duct segments reached and maintained a statistically significant decrease (from control no-flow conditions) at the end of the third hour of imposed flow. CONCLUSIONS: Our new findings provide a better understanding of how lymphatic contractility changes during the development of prolonged periods of steady lymph flow. The latter may occur during the initial phases of development of an inflammatory-related tissue edema.


Asunto(s)
Conducto Torácico/fisiología , Vasoconstricción , Animales , Hemodinámica , Masculino , Ratas , Factores de Tiempo
9.
Sci Rep ; 7(1): 12080, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935890

RESUMEN

Many tissues exhibit subatmospheric interstitial pressures under normal physiologic conditions. The mechanisms by which the lymphatic system extracts fluid from these tissues against the overall pressure gradient are unknown. We address this important physiologic issue by combining experimental measurements of contractile function and pressure generation with a previously validated mathematical model. We provide definitive evidence for the existence of 'suction pressure' in collecting lymphatic vessels, which manifests as a transient drop in pressure downstream of the inlet valve following contraction. This suction opens the inlet valve and is required for filling in the presence of low upstream pressure. Positive transmural pressure is required for this suction, providing the energy required to reopen the vessel. Alternatively, external vessel tethering can serve the same purpose when the transmural pressure is negative. Suction is transmitted upstream, allowing fluid to be drawn in through initial lymphatics. Because suction plays a major role in fluid entry to the lymphatics and is affected by interstitial pressure, our results introduce the phenomenon as another important factor to consider in the study of lymphoedema and its treatment.


Asunto(s)
Presión Atmosférica , Linfa/fisiología , Sistema Linfático/fisiología , Vasos Linfáticos/fisiología , Animales , Linfedema/fisiopatología , Linfedema/terapia , Masculino , Ratas Sprague-Dawley , Succión/métodos
10.
Int J Mol Sci ; 18(5)2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28467354

RESUMEN

This review provides a comprehensive summary of research on aging-associated alterations in lymphatic vessels and mast cells in perilymphatic tissues. Aging alters structure (by increasing the size of zones with low muscle cell investiture), ultrastructure (through loss of the glycocalyx), and proteome composition with a concomitant increase in permeability of aged lymphatic vessels. The contractile function of aged lymphatic vessels is depleted with the abolished role of nitric oxide and an increased role of lymphatic-born histamine in flow-dependent regulation of lymphatic phasic contractions and tone. In addition, aging induces oxidative stress in lymphatic vessels and facilitates the spread of pathogens from these vessels into perilymphatic tissues. Aging causes the basal activation of perilymphatic mast cells, which, in turn, restricts recruitment/activation of immune cells in perilymphatic tissues. This aging-associated basal activation of mast cells limits proper functioning of the mast cell/histamine/NF-κB axis that is essential for the regulation of lymphatic vessel transport and barrier functions as well as for both the interaction and trafficking of immune cells near and within lymphatic collecting vessels. Cumulatively, these changes play important roles in the pathogenesis of alterations in inflammation and immunity associated with aging.


Asunto(s)
Envejecimiento/fisiología , Inmunidad/inmunología , Inflamación/inmunología , Vasos Linfáticos/fisiología , Tejido Linfoide/fisiología , Animales , Histamina/metabolismo , Humanos , Mastocitos/metabolismo , Ratones , FN-kappa B/metabolismo , Ratas
11.
J Biophotonics ; 10(12): 1694-1702, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28464472

RESUMEN

Obesity is becoming a leading cause of health problems world-wide. Obesity and overweight are associated with the structural and chemical changes in tissues; however, few methods exist that allow for concurrent measurement of these changes. Using Brillouin and Raman microspectroscopy, both the mechanical and chemical differences can be assessed simultaneously. We hypothesized that Brillouin spectroscopy can measure the adipose tissues' stiffness, which increases in obesity. Samples of brown and white adipose tissues obtained from control and diet-induced obese adult rats were analyzed. The results show that both adipose tissues of the obese group exhibit a greater high-frequency longitudinal elastic modulus than the control samples, and that the brown fat is generally stiffer than white adipose. The Raman spectra indicate that the lipids' accumulation in adipose tissue outpaces the fibrosis, and that the high-fat diet has a greater effect on the brown adipose than the white fat. Overall, the powerful combination of Brillouin and Raman microspectroscopies successfully assessed both the mechanical properties and chemical composition of adipose tissue simultaneously for the first time. The results indicate that the adipose tissue experiences an obesity-induced increase in stiffness and lipid content, with the brown adipose tissue undergoing a more pronounced change compared to white adipose.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Fenómenos Mecánicos , Obesidad/inducido químicamente , Obesidad/patología , Fenómenos Ópticos , Tejido Adiposo/patología , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
12.
Lymphat Res Biol ; 15(2): 136-145, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28453392

RESUMEN

BACKGROUND: Knowledge of the mechanisms by which aging affects contracting lymphatic vessels remains incomplete; therefore, the functional role of histamine in the reaction of aged lymphatic vessels to increases in flow remains unknown. METHODS AND RESULTS: We measured and analyzed parameters of lymphatic contractility in isolated and pressurized rat mesenteric lymphatic vessels (MLVs) obtained from 9- and 24-month Fischer-344 rats under control conditions and after pharmacological blockade of nitric oxide (NO) by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 100 µM) or/and blockade of histamine production by α-methyl-DL-histidine dihydrochloride (α-MHD, 10 µM). We also quantitatively compared results of immunohistochemical labeling of the histamine-producing enzyme, histidine decarboxylase (HDC) in adult and aged MLVs. Our data provide the first demonstration of an increased functional role of histamine as an endothelial-derived relaxing factor in aged MLVs, which appears in parallel with the abolished role of NO in the reactions of these lymph vessels to increases in flow. In addition, we found an increased expression of HDC in endothelium of aged MLVs. CONCLUSIONS: Our findings provide the basis for better understanding of the processes of aging in lymphatic vessels and for setting new important directions for investigations of the aging-associated disturbances in lymph flow and the immune response.


Asunto(s)
Endotelio Vascular/metabolismo , Histamina/metabolismo , Vasos Linfáticos/metabolismo , Mesenterio , Factores de Edad , Animales , Presión Sanguínea , Células Endoteliales/metabolismo , Expresión Génica , Histamina/farmacología , Inmunohistoquímica , Masculino , Contracción Muscular/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Óxido Nítrico/metabolismo , Ratas , Resistencia al Corte
13.
Aging (Albany NY) ; 8(11): 3065-3090, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27875806

RESUMEN

This study aimed to establish mechanistic links between the aging-associated changes in the functional status of mast cells and the altered responses of mesenteric tissue and mesenteric lymphatic vessels (MLVs) to acute inflammation. We used an in vivo model of acute peritoneal inflammation induced by lipopolysaccharide treatment of adult (9-month) and aged (24-month) F-344 rats. We analyzed contractility of isolated MLVs, mast cell activation, activation of nuclear factor-κB (NF-κB) without and with stabilization of mast cells by cromolyn or blockade of all types of histamine receptors and production of 27 major pro-inflammatory cytokines in adult and aged perilymphatic mesenteric tissues and blood. We found that the reactivity of aged contracting lymphatic vessels to LPS-induced acute inflammation was abolished and that activated mast cells trigger NF-κB signaling in the mesentery through release of histamine. The aging-associated basal activation of mesenteric mast cells limits acute inflammatory NF-κB activation in aged mesentery. We conclude that proper functioning of the mast cell/histamine/NF-κB axis is necessary for reactions of the lymphatic vessels to acute inflammatory stimuli as well as for interaction and trafficking of immune cells near and within the collecting lymphatics.


Asunto(s)
Citocinas/metabolismo , Histamina/metabolismo , Inflamación/metabolismo , Mastocitos/metabolismo , FN-kappa B/metabolismo , Enfermedades Peritoneales/metabolismo , Animales , Cromolin Sódico/farmacología , Inflamación/inducido químicamente , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Vasos Linfáticos/metabolismo , Masculino , Mesenterio/metabolismo , Enfermedades Peritoneales/inducido químicamente , Ratas , Ratas Endogámicas F344
14.
Aging Cell ; 14(4): 582-94, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25982749

RESUMEN

The role of lymphatic vessels is to transport fluid, soluble molecules, and immune cells to the draining lymph nodes. Here, we analyze how the aging process affects the functionality of the lymphatic collectors and the dynamics of lymph flow. Ultrastructural, biochemical, and proteomic analysis indicates a loss of matrix proteins, and smooth muscle cells in aged collectors resulting in a decrease in contraction frequency, systolic lymph flow velocity, and pumping activity, as measured in vivo in lymphatic collectors. Functionally, this impairment also translated into a reduced ability for in vivo bacterial transport as determined by time-lapse microscopy. Ultrastructural and proteomic analysis also indicates a decrease in the thickness of the endothelial cell glycocalyx and loss of gap junction proteins in aged lymph collectors. Redox proteomic analysis mapped an aging-related increase in the glycation and carboxylation of lymphatic's endothelial cell and matrix proteins. Functionally, these modifications translate into apparent hyperpermeability of the lymphatics with pathogen escaping from the collectors into the surrounding tissue and a decreased ability to control tissue fluid homeostasis. Altogether, our data provide a mechanistic analysis of how the anatomical and biochemical changes, occurring in aged lymphatic vessels, compromise lymph flow, tissue fluid homeostasis, and pathogen transport.


Asunto(s)
Envejecimiento/metabolismo , Ganglios Linfáticos/metabolismo , Linfa/metabolismo , Vasos Linfáticos/química , Proteoma/metabolismo , Secuencia de Aminoácidos , Animales , Conexinas/genética , Conexinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Uniones Comunicantes/metabolismo , Uniones Comunicantes/ultraestructura , Glicocálix/química , Glicocálix/metabolismo , Glicosilación , Infecciones por Bacterias Grampositivas/metabolismo , Infecciones por Bacterias Grampositivas/microbiología , Homeostasis , Ganglios Linfáticos/microbiología , Ganglios Linfáticos/ultraestructura , Vasos Linfáticos/metabolismo , Vasos Linfáticos/microbiología , Vasos Linfáticos/ultraestructura , Masculino , Mesenterio/metabolismo , Mesenterio/microbiología , Mesenterio/ultraestructura , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mycobacterium smegmatis/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/ultraestructura , Proteoma/genética , Ratas , Ratas Endogámicas F344 , Staphylococcus aureus/fisiología , Imagen de Lapso de Tiempo
15.
J Immunol ; 194(11): 5200-10, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25917096

RESUMEN

Collecting lymphatic vessels (CLVs), surrounded by fat and endowed with contractile muscle and valves, transport lymph from tissues after it is absorbed into lymphatic capillaries. CLVs are not known to participate in immune responses. In this study, we observed that the inherent permeability of CLVs allowed broad distribution of lymph components within surrounding fat for uptake by adjacent macrophages and dendritic cells (DCs) that actively interacted with CLVs. Endocytosis of lymph-derived Ags by these cells supported recall T cell responses in the fat and also generated Ag-bearing DCs for emigration into adjacent lymph nodes (LNs). Enhanced recruitment of DCs to inflammation-reactive LNs significantly relied on adipose tissue DCs to maintain sufficient numbers of Ag-bearing DCs as the LN expanded. Thus, CLVs coordinate inflammation and immunity within adipose depots and foster the generation of an unexpected pool of APCs for Ag transport into the adjacent LN.


Asunto(s)
Tejido Adiposo/inmunología , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Ganglios Linfáticos/inmunología , Vasos Linfáticos/metabolismo , Tejido Adiposo/patología , Animales , Movimiento Celular/inmunología , Células Dendríticas/metabolismo , Endocitosis , Humanos , Inflamación/inmunología , Ganglios Linfáticos/citología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Permeabilidad , Ratas , Ratas Sprague-Dawley , Linfocitos T/inmunología , Uniones Estrechas/inmunología
16.
Lymphat Res Biol ; 12(3): 150-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25229433

RESUMEN

BACKGROUND: Until now, there has been no tool available to provide lymphatic researchers the ability to perform experiments in tissue explants containing lymphatic vessels under tissue position- and lymphatic lumen-controlled conditions. METHODS AND RESULTS: In this article we provide technical details and description of the method of using the newly developed and implemented the position- and lymphatic lumen-controlled tissue chambers to study live lymphatic vessels and surrounding tissues ex vivo. In this study, we, for the first time, performed detailed comparative analysis of the contractile and pumping activity of rat mesenteric lymphatic vessels (MLVs) situated within tissue explants mounted in new tissue chambers and isolated, cannulated, and pressurized rat MLVs maintained in isolated vessel setups. We found no significant differences of the effects of both transmural pressure- and wall shear stress sensitivities of MLVs in tissue chambers and isolated MLVs. CONCLUSIONS: We conclude that this new experimental tool, a position- and lymphatic lumen-controlled tissue chamber, allows precise investigation of lymphatic function of MLVs interacting with elements of the tissue microenvironment. This method provides an important new set of experimental tools to investigate lymphatic function.


Asunto(s)
Vasos Linfáticos/anatomía & histología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
17.
Microcirculation ; 21(7): 640-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24750494

RESUMEN

OBJECTIVES: The knowledge of the basic principles of lymphatic function, still remains, to a large degree, rudimentary and will require significant research efforts. Recent studies of the physiology of the MLVs suggested the presence of an EDRF other than NO. In this study, we tested the hypothesis that lymphatic endothelium-derived histamine relaxes MLVs. METHODS: We measured and analyzed parameters of lymphatic contractility in isolated and pressurized rat MLVs under control conditions and after pharmacological blockade of NO by L-NAME (100 µM) or/and histamine production by α-MHD (10 µM). Effectiveness of α-MHD was confirmed immunohistochemically. We also used immunohistochemical labeling and Western blot analysis of the histamine-producing enzyme, HDC. In addition, we blocked HDC protein expression in MLVs by transient transfection with vivo-morpholino oligos. RESULTS: We found that only combined pharmacological blockade of NO and histamine production completely eliminates flow-dependent relaxation of lymphatic vessels, thus confirming a role for histamine as an EDRF in MLVs. We also confirmed the presence of HDC and histamine inside lymphatic endothelial cells. CONCLUSIONS: This study supports a role for histamine as an EDRF in MLVs.


Asunto(s)
Endotelio Linfático/fisiología , Histamina/fisiología , Vasos Linfáticos/fisiología , Óxido Nítrico/fisiología , Animales , Endotelio Linfático/citología , Endotelio Linfático/efectos de los fármacos , Guanilato Ciclasa/antagonistas & inhibidores , Guanilato Ciclasa/fisiología , Histamina/análisis , Histidina Descarboxilasa/fisiología , Vasos Linfáticos/efectos de los fármacos , Masculino , Mesenterio , Metilhistidinas/farmacología , Morfolinos/farmacología , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/antagonistas & inhibidores , Ratas , Ratas Endogámicas F344 , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/fisiología , Guanilil Ciclasa Soluble
18.
Am J Physiol Regul Integr Comp Physiol ; 306(12): R901-7, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24671245

RESUMEN

Lymph flow is the primary mechanism for returning interstitial fluid to the blood circulation. Currently, the adaptive response of lymphatic vessels to mesenteric venous hypertension is not known. This study sought to determine the functional responses of postnodal mesenteric lymphatic vessels. We surgically occluded bovine mesenteric veins to create mesenteric venous hypertension to elevate mesenteric lymph flow. Three days after surgery, postnodal mesenteric lymphatic vessels from mesenteric venous hypertension (MVH; n = 7) and sham surgery (Sham; n = 6) group animals were evaluated and compared. Contraction frequency (MVH: 2.98 ± 0.75 min(-1); Sham: 5.42 ± 0.81 min(-1)) and fractional pump flow (MVH: 1.14 ± 0.30 min(-1); Sham: 2.39 ± 0.32 min(-1)) were significantly lower in the venous occlusion group. These results indicate that postnodal mesenteric lymphatic vessels adapt to mesenteric venous hypertension by reducing intrinsic contractile activity.


Asunto(s)
Adaptación Fisiológica/fisiología , Bovinos/fisiología , Hipertensión/fisiopatología , Vasos Linfáticos/fisiología , Mesenterio/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Linfa/fisiología , Sistema Linfático/fisiología , Venas Mesentéricas/fisiopatología , Microcirculación/fisiología , Factores de Tiempo , Equilibrio Hidroelectrolítico/fisiología
19.
Lymphat Res Biol ; 12(1): 37-47, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24650109

RESUMEN

BACKGROUND: Aging impairs mesenteric lymph flow, which is crucial for fluid and macromolecule homeostasis, fat absorption, and immune function. Previously, we demonstrated that mast cells (MCs) line mesenteric lymphatic vessels (MLVs) with a greater degree of basal activation of MCs in aged mesentery. The number of intact MCs available to react acutely to inflammatory stimuli was decreased with age. However, the role of mast cells in recruiting other immune cells towards MLVs and its aging-associated alterations has not been explored before in great detail. METHODS AND RESULTS: In this study we treated live mesenteric tissue isolated from Sprague Dawley (SD) rats, as well as adult 9-mo and aged 24-mo Fischer-344 (F-344) rats for 2 hours with MC activators (48/80 and Substance P) and performed whole mount IHC and vital dye staining of the mesenteric segments containing MLVs to identify immune cell recruitment towards MLVs after mast cell (MC) activation. Number of major histocompatibility complex (MHC) class II positive APCs and eosinophils near MLVs was counted and compared between treatments and ages. CONCLUSIONS: With greater density of MCs near MLVs, we for the first time demonstrated that mesenteric MC activation by compound 48/80 and Substance P resulted in recruitment of MHC class II positive cells and eosinophils towards MLVs. This effect was reduced in cromolyn-injected rats, thus confirming that MCs are necessary for such recruitment. The immune cell presence near MLVs after MC activation was reduced in aged tissues. We link these findings to our previous report of lesser number of intact MCs available for initiating an acute immune response in aged mesentery. Cumulatively, these findings serve as the first step in study of the aging-associated mechanisms that link MCs, lymphatic vessels, and disordered immune function in the elderly.


Asunto(s)
Envejecimiento/inmunología , Eosinófilos/inmunología , Vasos Linfáticos/inmunología , Mastocitos/inmunología , Mesenterio/inmunología , Animales , Quimiotaxis de Leucocito/inmunología , Eosinófilos/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Inmunohistoquímica , Vasos Linfáticos/citología , Masculino , Mastocitos/metabolismo , Mesenterio/citología , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley
20.
Am J Physiol Heart Circ Physiol ; 305(10): H1494-507, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23997104

RESUMEN

Lymphatic muscle (LM) is widely considered to be a type of vascular smooth muscle, even though LM cells uniquely express contractile proteins from both smooth muscle and cardiac muscle. We tested the hypothesis that LM exhibits an unloaded maximum shortening velocity (Vmax) intermediate between that of smooth muscle and cardiac muscle. Single lymphatic vessels were dissected from the rat mesentery, mounted in a servo-controlled wire myograph, and subjected to isotonic quick release protocols during spontaneous or agonist-evoked contractions. After maximal activation, isotonic quick releases were performed at both the peak and plateau phases of contraction. Vmax was 0.48 ± 0.04 lengths (L)/s at the peak: 2.3 times higher than that of mesenteric arteries and 11.4 times higher than mesenteric veins. In cannulated, pressurized lymphatic vessels, shortening velocity was determined from the maximal rate of constriction [rate of change in internal diameter (-dD/dt)] during spontaneous contractions at optimal preload and minimal afterload; peak -dD/dt exceeded that obtained during any of the isotonic quick release protocols (2.14 ± 0.30 L/s). Peak -dD/dt declined with pressure elevation or activation using substance P. Thus, isotonic methods yielded Vmax values for LM in the mid to high end (0.48 L/s) of those the recorded for phasic smooth muscle (0.05-0.5 L/s), whereas isobaric measurements yielded values (>2.0 L/s) that overlapped the midrange of values for cardiac muscle (0.6-3.3 L/s). Our results challenge the dogma that LM is classical vascular smooth muscle, and its unusually high Vmax is consistent with the expression of cardiac muscle contractile proteins in the lymphatic vessel wall.


Asunto(s)
Contracción Isométrica , Contracción Isotónica , Vasos Linfáticos/fisiología , Mesenterio/irrigación sanguínea , Músculo Liso/fisiología , Músculo Estriado/fisiología , Animales , Contracción Isométrica/efectos de los fármacos , Contracción Isotónica/efectos de los fármacos , Cinética , Vasos Linfáticos/efectos de los fármacos , Masculino , Músculo Liso/efectos de los fármacos , Músculo Liso Vascular/fisiología , Músculo Estriado/efectos de los fármacos , Miocardio , Presión , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...