Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 12: 676596, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017319

RESUMEN

The cell surface of Gram-negative bacteria usually exhibits a net negative charge mostly conferred by lipopolysaccharides (LPS). This property sensitizes bacterial cells to cationic antimicrobial peptides, such as polymyxin B, by favoring their binding to the cell surface. Gram-negative bacteria can modify their surface to counteract these compounds such as the decoration of their LPS by positively charged groups. For example, in Escherichia coli and Salmonella, EptA and ArnT add amine-containing groups to the lipid A moiety. In contrast, LpxT enhances the net negative charge by catalyzing the synthesis of tri-phosphorylated lipid A, whose function is yet unknown. Here, we report that E. coli has the intrinsic ability to resist polymyxin B upon the simultaneous activation of the two component regulatory systems PhoPQ and PmrAB by intricate environmental cues. Among many LPS modifications, only EptA- and ArnT-dependent decorations were required for polymyxin B resistance. Conversely, the acquisition of polymyxin B resistance compromised the innate resistance of E. coli to deoxycholate, a major component of bile. The inhibition of LpxT by PmrR, under PmrAB-inducing conditions, specifically accounted for the acquired susceptibility to deoxycholate. We also report that the kinetics of intestinal colonization by the E. coli lpxT mutant was impaired as compared to wild-type in a mouse model of infection and that lpxT was upregulated at the temperature of the host. Together, these findings highlight an important function of LpxT and suggest that a tight equilibrium between EptA- and LpxT-dependent decorations, which occur at the same position of lipid A, is critical for the life style of E. coli.

2.
PLoS Pathog ; 15(9): e1007972, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31487328

RESUMEN

The biogenesis of bacterial cell-envelope polysaccharides requires the translocation, across the plasma membrane, of sugar sub-units that are produced inside the cytoplasm. To this end, the hydrophilic sugars are anchored to a lipid phosphate carrier (undecaprenyl phosphate (C55-P)), yielding membrane intermediates which are translocated to the outer face of the membrane. Finally, the glycan moiety is transferred to a nascent acceptor polymer, releasing the carrier in the "inactive" undecaprenyl pyrophosphate (C55-PP) form. Thus, C55-P is generated through the dephosphorylation of C55-PP, itself arising from either de novo synthesis or recycling. Two types of integral membrane C55-PP phosphatases were described: BacA enzymes and a sub-group of PAP2 enzymes (type 2 phosphatidic acid phosphatases). The human pathogen Helicobacter pylori does not contain BacA homologue but has four membrane PAP2 proteins: LpxE, LpxF, HP0350 and HP0851. Here, we report the physiological role of HP0851, renamed HupA, via multiple and complementary approaches ranging from a detailed biochemical characterization to the assessment of its effect on cell envelope metabolism and microbe-host interactions. HupA displays a dual function as being the main C55-PP pyrophosphatase (UppP) and phosphatidylglycerol phosphate phosphatase (PGPase). Although not essential in vitro, HupA was essential in vivo for stomach colonization. In vitro, the remaining UppP activity was carried out by LpxE in addition to its lipid A 1-phosphate phosphatase activity. Both HupA and LpxE have crucial roles in the biosynthesis of several cell wall polysaccharides and thus constitute potential targets for new therapeutic strategies.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Helicobacter pylori/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de la Membrana Bacteriana Externa/fisiología , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Proteínas de Unión al ADN , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Femenino , Helicobacter pylori/patogenicidad , Ratones , Ratones Endogámicos , Pruebas de Sensibilidad Microbiana , Fosfatidato Fosfatasa , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Polimixina B/farmacología , Pirofosfatasas/metabolismo , Estómago
3.
RNA ; 22(10): 1560-73, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27495318

RESUMEN

The rpsO-pnp operon encodes ribosomal protein S15 and polynucleotide phosphorylase, a major 3'-5' exoribonuclease involved in mRNA decay in Escherichia coli The gene for the SraG small RNA is located between the coding regions of the rpsO and pnp genes, and it is transcribed in the opposite direction relative to the two genes. No function has been assigned to SraG. Multiple levels of post-transcriptional regulation have been demonstrated for the rpsO-pnp operon. Here we show that SraG is a new factor affecting pnp expression. SraG overexpression results in a reduction of pnp expression and a destabilization of pnp mRNA; in contrast, inhibition of SraG transcription results in a higher level of the pnp transcript. Furthermore, in vitro experiments indicate that SraG inhibits translation initiation of pnp Together, these observations demonstrate that SraG participates in the post-transcriptional control of pnp by a direct antisense interaction between SraG and PNPase RNAs. Our data reveal a new level of regulation in the expression of this major exoribonuclease.


Asunto(s)
Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Bacteriano/genética , ARN Interferente Pequeño/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Homeostasis , Operón , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
4.
Antimicrob Agents Chemother ; 57(1): 183-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23089751

RESUMEN

Acinetobacter baumannii is an opportunistic pathogen that is an important source of nosocomial infections. Production of extended-spectrum ß-lactamases (ESBLs) of the GES type in A. baumannii has been increasingly reported, and some of these GES-type enzymes possess some carbapenemase activity. Our aim was to analyze the resistance determinants and the clonal relationships of carbapenem-nonsusceptible A. baumannii clinical isolates recovered from hospitals in Kuwait. A total of 63 isolates were analyzed, and all were found to be positive for bla(GES)-type genes. One isolate harbored the bla(GES-14) gene encoding an ESBL with significant carbapenemase activity, whereas the other isolates harbored the bla(GES-11) ESBL gene. Thirty-three isolates coharbored the bla(OXA-23) and bla(GES-11) genes. Analyses of the genetic locations indicated that the bla(GES-11/-14) genes were plasmid located. It is noteworthy that the bla(OXA-23) and bla(GES-11) genes were colocated onto a single plasmid. Nine different pulsotypes were observed among the 63 isolates. This study showed the emergence of GES-type ESBLs in A. baumannii in Kuwait, further suggesting that the Middle East region might be a reservoir for carbapenemase-producing A. baumannii.


Asunto(s)
Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Carbapenémicos/farmacología , Plásmidos , beta-Lactamasas/genética , Infecciones por Acinetobacter/epidemiología , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Proteínas Bacterianas/clasificación , Técnicas de Tipificación Bacteriana , Electroforesis en Gel de Campo Pulsado , Humanos , Kuwait/epidemiología , Resistencia betalactámica/efectos de los fármacos , Resistencia betalactámica/genética , beta-Lactamasas/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...