Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Top Dev Biol ; 153: 281-326, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967198

RESUMEN

The intestinal epithelium plays a key role in digestion and protection against external pathogens. This tissue presents a high cellular turnover with the epithelium being completely renewed every 5days, driven by intestinal stem cells (ISCs) residing in the crypt bases. To sustain this dynamic renewal of the intestinal epithelium, the maintenance, proliferation, and differentiation of ISCs must be precisely controlled. One of the central pathways supporting ISC maintenance and dynamics is the Wnt pathway. In this chapter, we examine the role of Wnt signaling in intestinal epithelial homeostasis and tissue regeneration, including mechanisms regulating ISC identity and fine-tuning of Wnt pathway activation. We extensively discuss the contribution of the stem cell niche in maintaining Wnt signaling in the intestinal crypts that support ISC functions. The integration of these findings highlights the complex interplay of multiple niche signals and cellular components sustaining ISC behavior and maintenance, which together supports the immense plasticity of the intestinal epithelium.


Asunto(s)
Mucosa Intestinal , Vía de Señalización Wnt , Vía de Señalización Wnt/fisiología , Proliferación Celular , Mucosa Intestinal/metabolismo , Diferenciación Celular/fisiología , Células Madre , Intestinos/fisiología
2.
Stem Cell Reports ; 17(9): 1991-2004, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35961310

RESUMEN

IL-6 has been shown to be required for somatic cell reprogramming into induced pluripotent stem cells (iPSCs). However, how Il6 expression is regulated and whether it plays a role during embryo development remains unknown. Here, we describe that IL-6 is necessary for C/EBPα-enhanced reprogramming of B cells into iPSCs but not for B cell to macrophage transdifferentiation. C/EBPα overexpression activates both Il6 and Il6ra genes in B cells and in PSCs. In embryo development, Cebpa is enriched in the trophectoderm of blastocysts together with Il6, while Il6ra is mostly expressed in the inner cell mass (ICM). In addition, Il6 expression in blastocysts requires Cebpa. Blastocysts secrete IL-6 and neutralization of the cytokine delays the morula to blastocyst transition. The observed requirement of C/EBPα-regulated IL-6 signaling for pluripotency during somatic cell reprogramming thus recapitulates a physiologic mechanism in which the trophectoderm acts as niche for the ICM through the secretion of IL-6.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT , Interleucina-6 , Blastocisto , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Desarrollo Embrionario , Interleucina-6/metabolismo , Mórula/metabolismo
3.
Nature ; 585(7825): 404-409, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32848249

RESUMEN

To implant in the uterus, the mammalian embryo first specifies two cell lineages: the pluripotent inner cell mass that forms the fetus, and the outer trophectoderm layer that forms the placenta1. In many organisms, asymmetrically inherited fate determinants drive lineage specification2, but this is not thought to be the case during early mammalian development. Here we show that intermediate filaments assembled by keratins function as asymmetrically inherited fate determinants in the mammalian embryo. Unlike F-actin or microtubules, keratins are the first major components of the cytoskeleton that display prominent cell-to-cell variability, triggered by heterogeneities in the BAF chromatin-remodelling complex. Live-embryo imaging shows that keratins become asymmetrically inherited by outer daughter cells during cell division, where they stabilize the cortex to promote apical polarization and YAP-dependent expression of CDX2, thereby specifying the first trophectoderm cells of the embryo. Together, our data reveal a mechanism by which cell-to-cell heterogeneities that appear before the segregation of the trophectoderm and the inner cell mass influence lineage fate, via differential keratin regulation, and identify an early function for intermediate filaments in development.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Queratinas/metabolismo , Actinas/metabolismo , Animales , División Celular , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Ectodermo/citología , Embrión de Mamíferos/embriología , Femenino , Humanos , Filamentos Intermedios/metabolismo , Ratones , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Trofoblastos/citología
4.
Cell ; 173(3): 776-791.e17, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29576449

RESUMEN

Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation.


Asunto(s)
Actinas/química , Blastocisto/metabolismo , Microtúbulos/metabolismo , Miosina Tipo II/química , Animales , Comunicación Celular , Proteínas del Citoesqueleto/química , Embrión de Mamíferos , Desarrollo Embrionario , Femenino , Proteínas Fluorescentes Verdes , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Mórula , ARN Interferente Pequeño/metabolismo , Uniones Estrechas
5.
Curr Top Dev Biol ; 128: 37-58, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29477170

RESUMEN

The early mouse embryo offers a phenomenal system to dissect how changes in the mechanisms controlling cell fate are integrated with morphogenetic events at the single-cell level. New technologies based on live imaging have enabled the discovery of dynamic changes in the regulation of single genes, transcription factors, and epigenetic mechanisms directing early cell fate decision in the early embryo. Here, we review recent progress in linking molecular dynamic events occurring at the level of the single cell in vivo, to some of the key morphogenetic changes regulating early mouse development.


Asunto(s)
Blastocisto/citología , Linaje de la Célula , Desarrollo Embrionario , Mamíferos/embriología , Animales , Blastocisto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Factores de Transcripción/metabolismo
6.
Nat Protoc ; 8(12): 2538-47, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24263093

RESUMEN

RNA in situ hybridization (ISH) has been widely used in cell and developmental biology research to study gene expression. Classical ISH protocols use colorimetric staining approaches, such as the assay with nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl-phosphate (NBT/BCIP), which do not allow the implementation of multiple probe analyses and do not enable investigators to achieve cellular resolution. Here we describe a protocol to determine the presence of target cytoplasmic RNA via cytoplasmic fluorescence ISH (cFISH), an approach that renders possible the visualization of specific RNA strands from the whole tissue down to the cell. This fluorescence technique, adapted here for use in mouse embryos, enables researchers to implement multiple labeling by combining several RNA probes and/or antibodies in immuno-cFISH. Depending on the options chosen, the protocol can be completed within 2 or 3 d.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , ARN Mensajero/análisis , Animales , Citoplasma/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/ultraestructura , Ratones , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...