Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Haematologica ; 109(4): 1069-1081, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37794795

RESUMEN

Advances in the clinical management of pediatric B-cell acute lymphoblastic leukemia (B-ALL) have dramatically improved outcomes for this disease. However, relapsed and high-risk disease still contribute to significant numbers of treatment failures. Development of new, broad range therapies is urgently needed for these cases. We previously reported the susceptibility of ETV6-RUNX1+ pediatric B-ALL to inhibition of signal transducer and activator of transcription 3 (STAT3) activity. In the present study, we demonstrate that pharmacological or genetic inhibition of STAT3 results in p53 induction and that CRISPR-mediated TP53 knockout substantially reverses susceptibility to STAT3 inhibition. Furthermore, we demonstrate that sensitivity to STAT3 inhibition in patient-derived xenograft (PDX) B-ALL samples is not restricted to any particular disease subtype, but rather depends on TP53 status, the only resistant samples being TP53 mutant. Induction of p53 following STAT3 inhibition is not directly dependent on MDM2 but correlates with degradation of MDM4. As such, STAT3 inhibition exhibits synergistic in vitro and in vivo anti-leukemia activity when combined with MDM2 inhibition. Taken together with the relatively low frequency of TP53 mutations in this disease, these data support the future development of combined STAT3/ MDM2 inhibition in the therapy of refractory and relapsed pediatric B-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Niño , Humanos , Proteínas de Ciclo Celular/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Recurrencia , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Clin Transl Med ; 12(6): e933, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35730653

RESUMEN

BACKGROUND: Improving the poor prognosis of infant leukaemias remains an unmet clinical need. This disease is a prototypical fusion oncoprotein-driven paediatric cancer, with MLL (KMT2A)-fusions present in most cases. Direct targeting of these driving oncoproteins represents a unique therapeutic opportunity. This rationale led us to initiate a drug screening with the aim of discovering drugs that can block MLL-fusion oncoproteins. METHODS: A screen for inhibition of MLL-fusion proteins was developed that overcomes the traditional limitations of targeting transcription factors. This luciferase reporter-based screen, together with a secondary western blot screen, was used to prioritize compounds. We characterized the lead compound, disulfiram (DSF), based on its efficient ablation of MLL-fusion proteins. The consequences of drug-induced MLL-fusion inhibition were confirmed by cell proliferation, colony formation, apoptosis assays, RT-qPCR, in vivo assays, RNA-seq and ChIP-qPCR and ChIP-seq analysis. All statistical tests were two-sided. RESULTS: Drug-induced inhibition of MLL-fusion proteins by DSF resulted in a specific block of colony formation in MLL-rearranged cells in vitro, induced differentiation and impeded leukaemia progression in vivo. Mechanistically, DSF abrogates MLL-fusion protein binding to DNA, resulting in epigenetic changes and down-regulation of leukaemic programmes setup by the MLL-fusion protein. CONCLUSION: DSF can directly inhibit MLL-fusion proteins and demonstrate antitumour activity both in vitro and in vivo, providing, to our knowledge, the first evidence for a therapy that directly targets the initiating oncogenic MLL-fusion protein.


Asunto(s)
Leucemia , Proteínas de Fusión Oncogénica , Enfermedad Aguda , Apoptosis , Proliferación Celular , Niño , Epigénesis Genética , Humanos , Lactante , Leucemia/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo
3.
Leukemia ; 36(6): 1541-1549, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35368048

RESUMEN

A significant proportion of patients suffering from acute myeloid leukemia (AML) cannot be cured by conventional chemotherapy, relapsed disease being a common problem. Molecular targeting of essential oncogenic mediators is an attractive approach to improving outcomes for this disease. The hematopoietic transcription factor c-MYB has been revealed as a central component of complexes maintaining aberrant gene expression programs in AML. We have previously screened the Connectivity Map database to identify mebendazole as an anti-AML therapeutic targeting c-MYB. In the present study we demonstrate that another hit from this screen, the steroidal lactone withaferin A (WFA), induces rapid ablation of c-MYB protein and consequent inhibition of c-MYB target gene expression, loss of leukemia cell viability, reduced colony formation and impaired disease progression. Although WFA has been reported to have pleiotropic anti-cancer effects, we demonstrate that its anti-AML activity depends on c-MYB modulation and can be partially reversed by a stabilized c-MYB mutant. c-MYB ablation results from disrupted HSP/HSC70 chaperone protein homeostasis in leukemia cells following induction of proteotoxicity and the unfolded protein response by WFA. The widespread use of WFA in traditional medicines throughout the world indicates that it represents a promising candidate for repurposing into AML therapy.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-myb , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mebendazol , Oncogenes , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Factores de Transcripción/genética
5.
Sci Transl Med ; 12(526)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941829

RESUMEN

Overcoming drug resistance remains a key challenge to cure patients with acute and chronic B cell malignancies. Here, we describe a stromal cell-autonomous signaling pathway, which contributes to drug resistance of malignant B cells. We show that protein kinase C (PKC)-ß-dependent signals from bone marrow-derived stromal cells markedly decrease the efficacy of cytotoxic therapies. Conversely, small-molecule PKC-ß inhibitors antagonize prosurvival signals from stromal cells and sensitize tumor cells to targeted and nontargeted chemotherapy, resulting in enhanced cytotoxicity and prolonged survival in vivo. Mechanistically, stromal PKC-ß controls the expression of adhesion and matrix proteins, required for activation of phosphoinositide 3-kinases (PI3Ks) and the extracellular signal-regulated kinase (ERK)-mediated stabilization of B cell lymphoma-extra large (BCL-XL) in tumor cells. Central to the stroma-mediated drug resistance is the PKC-ß-dependent activation of transcription factor EB, regulating lysosome biogenesis and plasma membrane integrity. Stroma-directed therapies, enabled by direct inhibition of PKC-ß, enhance the effectiveness of many antileukemic therapies.


Asunto(s)
Proteína Quinasa C beta/metabolismo , Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Fosforilación/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Células Tumorales Cultivadas
6.
Leukemia ; 33(12): 2817-2829, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31138842

RESUMEN

Subtype-specific leukemia oncogenes drive aberrant gene expression profiles that converge on common essential mediators to ensure leukemia self-renewal and inhibition of differentiation. The transcription factor c-MYB functions as one such mediator in a diverse range of leukemias. Here we show for the first time that transcriptional repression of myeloid differentiation associated c-MYB target genes in AML is enforced by the AAA+ ATPase RUVBL2. Silencing RUVBL2 expression resulted in increased binding of c-MYB to these loci and their transcriptional activation. RUVBL2 inhibition resulted in AML cell apoptosis and severely impaired disease progression of established AML in engrafted mice. In contrast, such inhibition had little impact on normal hematopoietic progenitor differentiation. These data demonstrate that RUVBL2 is essential for the oncogenic function of c-MYB in AML by governing inhibition of myeloid differentiation. They also indicate that targeting the control of c-MYB function by RUVBL2 is a promising approach to developing future anti-AML therapies.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , ADN Helicasas/metabolismo , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas c-myb/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Línea Celular Tumoral , ADN Helicasas/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Hematopoyesis/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Unión Proteica , Proteínas Proto-Oncogénicas c-myb/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Br J Cancer ; 118(2): 200-212, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29161243

RESUMEN

BACKGROUND: Platinum-based drugs such as Cisplatin are commonly employed for cancer treatment. Despite an initial therapeutic response, Cisplatin treatment often results in the development of chemoresistance. To identify novel approaches to overcome Cisplatin resistance, we tested Cisplatin in combination with K+ channel modulators on colorectal cancer (CRC) cells. METHODS: The functional expression of Ca2+-activated (KCa3.1, also known as KCNN4) and voltage-dependent (Kv11.1, also known as KCNH2 or hERG1) K+ channels was determined in two CRC cell lines (HCT-116 and HCT-8) by molecular and electrophysiological techniques. Cisplatin and several K+ channel modulators were tested in vitro for their action on K+ currents, cell vitality, apoptosis, cell cycle, proliferation, intracellular signalling and Platinum uptake. These effects were also analysed in a mouse model mimicking Cisplatin resistance. RESULTS: Cisplatin-resistant CRC cells expressed higher levels of KCa3.1 and Kv11.1 channels, compared with Cisplatin-sensitive CRC cells. In resistant cells, KCa3.1 activators (SKA-31) and Kv11.1 inhibitors (E4031) had a synergistic action with Cisplatin in triggering apoptosis and inhibiting proliferation. The effect was maximal when KCa3.1 activation and Kv11.1 inhibition were combined. In fact, similar results were produced by Riluzole, which is able to both activate KCa3.1 and inhibit Kv11.1. Cisplatin uptake into resistant cells depended on KCa3.1 channel activity, as it was potentiated by KCa3.1 activators. Kv11.1 blockade led to increased KCa3.1 expression and thereby stimulated Cisplatin uptake. Finally, the combined administration of a KCa3.1 activator and a Kv11.1 inhibitor also overcame Cisplatin resistance in vivo. CONCLUSIONS: As Riluzole, an activator of KCa3.1 and inhibitor of Kv11.1 channels, is in clinical use, our results suggest that this compound may be useful in the clinic to improve Cisplatin efficacy and overcome Cisplatin resistance in CRC.


Asunto(s)
Cisplatino/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Canal de Potasio ERG1/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Animales , Apoptosis/efectos de los fármacos , Benzotiazoles/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacocinética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Canal de Potasio ERG1/metabolismo , Células HCT116 , Células HT29 , Humanos , Concentración 50 Inhibidora , Ratones , Bloqueadores de los Canales de Potasio/farmacología , Pirazoles/farmacología , Riluzol/farmacología
8.
Sci Signal ; 10(473)2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-28377405

RESUMEN

Ion channels regulate cell proliferation, differentiation, and migration in normal and neoplastic cells through cell-cell and cell-extracellular matrix (ECM) transmembrane receptors called integrins. K+ flux through the human ether-à-go-go-related gene 1 (hERG1) channel shapes action potential firing in excitable cells such as cardiomyocytes. Its abundance is often aberrantly high in tumors, where it modulates integrin-mediated signaling. We found that hERG1 interacted with the ß1 integrin subunit at the plasma membrane of human cancer cells. This interaction was not detected in cardiomyocytes because of the presence of the hERG1 auxiliary subunit KCNE1 (potassium voltage-gated channel subfamily E regulatory subunit 1), which blocked the ß1 integrin-hERG1 interaction. Although open hERG1 channels did not interact as strongly with ß1 integrins as did closed channels, current flow through hERG1 channels was necessary to activate the integrin-dependent phosphorylation of Tyr397 in focal adhesion kinase (FAK) in both normal and cancer cells. In immunodeficient mice, proliferation was inhibited in breast cancer cells expressing forms of hERG1 with impaired K+ flow, whereas metastasis of breast cancer cells was reduced when the hERG1/ß1 integrin interaction was disrupted. We conclude that the interaction of ß1 integrins with hERG1 channels in cancer cells stimulated distinct signaling pathways that depended on the conformational state of hERG1 and affected different aspects of tumor progression.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Integrina beta1/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Transferencia Resonante de Energía de Fluorescencia , Células HCT116 , Células HEK293 , Humanos , Immunoblotting , Integrina beta1/química , Integrina beta1/genética , Ratones Desnudos , Ratones SCID , Microscopía Confocal , Neoplasias/genética , Neoplasias/patología , Unión Proteica , Conformación Proteica , Trasplante Heterólogo
9.
Mol Pharmacol ; 87(2): 183-96, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25411366

RESUMEN

KV11.1 (hERG1) channels are often overexpressed in human cancers. In leukemias, KV11.1 regulates pro-survival signals that promote resistance to chemotherapy, raising the possibility that inhibitors of KV11.1 could be therapeutically beneficial. However, because of the role of KV11.1 in cardiac repolarization, blocking these channels may cause cardiac arrhythmias. We show that CD-160130, a novel pyrimido-indole compound, blocks KV11.1 channels with a higher efficacy for the KV11.1 isoform B, in which the IC50 (1.8 µM) was approximately 10-fold lower than observed in KV11.1 isoform A. At this concentration, CD-160130 also had minor effects on Kir2.1, KV 1.3, Kv1.5, and KCa3.1. In vitro, CD-160130 induced leukemia cell apoptosis, and could overcome bone marrow mesenchymal stromal cell (MSC)-induced chemoresistance. This effect was caused by interference with the survival signaling pathways triggered by MSCs. In vivo, CD-160130 produced an antileukemic activity, stronger than that caused by cytarabine. Consistent with its atypical target specificity, CD-160130 did not bind to the main binding site of the arrhythmogenic KV11.1 blockers (the Phe656 pore residue). Importantly, in guinea pigs CD-160130 produced neither alteration of the cardiac action potential shape in dissociated cardiomyocytes nor any lengthening of the QT interval in vivo. Moreover, CD-160130 had no myelotoxicity on human bone marrow-derived cells. Therefore, CD-160130 is a promising first-in-class compound to attempt oncologic therapy without cardiotoxicity, based on targeting KV11.1. Because leukemia and cardiac cells tend to express different ratios of the A and B KV11.1 isoforms, the pharmacological properties of CD-160130 may depend, at least in part, on isoform specificity.


Asunto(s)
Antineoplásicos/farmacología , Cardiotoxinas , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Indoles/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinonas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Cobayas , Células HEK293 , Células HL-60 , Humanos , Indoles/química , Indoles/uso terapéutico , Leucemia de Células B/tratamiento farmacológico , Leucemia de Células B/metabolismo , Leucemia de Células B/patología , Masculino , Ratones , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Pirimidinas/uso terapéutico , Pirimidinonas/química , Pirimidinonas/uso terapéutico , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
10.
Dalton Trans ; 43(32): 12150-5, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-24975719

RESUMEN

We report here that the established anticancer ruthenium(iii) complex NAMI-A induces potent and selective cytotoxic effects in a few leukaemia cell lines. These results sound very surprising after 20 years of intense studies on NAMI-A, commonly considered as a "non-cytotoxic" antimetastatic agent. In addition, evidence is given for selective inhibition of KCa 3.1 channels. The implications of these findings are discussed.


Asunto(s)
Antineoplásicos/farmacología , Dimetilsulfóxido/análogos & derivados , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Compuestos Organometálicos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dimetilsulfóxido/farmacología , Humanos , Leucemia , Compuestos de Rutenio
11.
Diagn Mol Pathol ; 22(4): 215-21, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24193004

RESUMEN

Cancer molecular investigation revealed a huge molecular heterogeneity between different types of cancers as well as among cancer patients affected by the same cancer type. This implies the necessity of a personalized approach for cancer diagnosis and therapy, on the basis of the development of standardized protocols to facilitate the application of molecular techniques in the clinical decision-making process. Ion channels encoding genes are acquiring increasing relevance in oncological translational studies, representing new candidates for molecular diagnostic and therapeutic purposes. Hence, the development of molecular protocols for the quantification of ion channels encoding genes in tumor specimens may have relevance for diagnostic and prognostic investigation. Two main hindrances must be overcome for these purposes: the use of formalin-fixed and paraffin-embedded samples for gene expression analysis and the physiological expression of ion channels in excitable cells, potentially present in the tumor sample. We here propose a method for hERG1 gene quantification in colorectal cancer samples in both cryopreserved and formalin-fixed and paraffin-embedded samples. An analytical method was developed to estimate hERG1 gene expression exclusively in epithelial cancer cells. Indeed, we found that the hERG1 gene was expressed at significant levels by myofibroblasts present in the tumor stroma. This method was based on the normalization on a smooth muscle-myofibroblast-specific gene, MYH11, with no need of microdissection. By applying this method, hERG1 expression turned out to correlate with VEGF-A expression, confirming previous immunohistochemical data.


Asunto(s)
Neoplasias Colorrectales/patología , Canales de Potasio Éter-A-Go-Go/biosíntesis , Perfilación de la Expresión Génica/métodos , Expresión Génica , Patología Molecular/métodos , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Manejo de Especímenes/métodos , Fijación del Tejido/métodos , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética
12.
Sci Rep ; 3: 3308, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24270902

RESUMEN

Angiogenesis is a potential target for cancer therapy. We identified a novel signaling pathway that sustains angiogenesis and progression in colorectal cancer (CRC). This pathway is triggered by ß1 integrin-mediated adhesion and leads to VEGF-A secretion. The effect is modulated by the human ether-à-go-go related gene 1 (hERG1) K(+) channel. hERG1 recruits and activates PI3K and Akt. This in turn increases the Hypoxia Inducible Factor (HIF)-dependent transcription of VEGF-A and other tumour progression genes. This signaling pathway has novel features in that the integrin- and hERG1-dependent activation of HIF (i) is triggered in normoxia, especially after CRC cells have experienced a hypoxic stage, (ii) involves NF-kB and (iii) is counteracted by an active p53. Blocking hERG1 switches this pathway off also in vivo, by inhibiting cell growth, angiogenesis and metastatic spread. This suggests that non-cardiotoxic anti-hERG1 drugs might be a fruitful therapeutic strategy to prevent the failure of anti-VEGF therapy.


Asunto(s)
Neoplasias Colorrectales/patología , Canales de Potasio Éter-A-Go-Go/metabolismo , Integrina beta1/metabolismo , Neovascularización Patológica/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/genética , Células HCT116 , Células HT29 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Ratones Desnudos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Trasplante Heterólogo , Proteína p53 Supresora de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Recent Pat Anticancer Drug Discov ; 8(1): 53-65, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22574647

RESUMEN

K+ Channels form the largest family among ion channels. Besides regulating many physiological functions, K+ channels, being aberrantly expressed in different types of tumors, affect several hallmarks of cancer. In cancer cells, K+ channel activity regulates cell proliferation, resistance to apoptotic cell death, tumor angiogenesis, invasiveness and metastatic spread. Moreover, being expressed in cells of the tumor microenvironment, K+ channels can also modulate the immune/inflammatory response which contributes to drive cancer establishment and progression. After almost 30 years of studies, some K+ channels are emerging as novel cancer biomarkers, to be employed to stratify patients for either prognostic or predictive purposes. Moreover, it is not remote the time in which it will be possible to target specific K+ channels in cancer for therapeutic purposes. One hindrance for applying a K+ channel-based therapy to cancer is the fact that K+ channel blockers can cause side effects, which often overlap with, but can mask, benefits. We here show some strategies to overcome harmful side effects caused by blocking K+ channels. Once taken into account these strategies, K+ channels may represent suitable and easily accessible cancer biomarkers and targets for therapy. The relevant patents related to K+ channels and cancer are discussed.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias/tratamiento farmacológico , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/efectos de los fármacos , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/química , Biomarcadores de Tumor/química , Diseño de Fármacos , Humanos , Legislación de Medicamentos , Terapia Molecular Dirigida , Neoplasias/metabolismo , Neoplasias/patología , Patentes como Asunto , Bloqueadores de los Canales de Potasio/efectos adversos , Bloqueadores de los Canales de Potasio/química , Canales de Potasio/química , Canales de Potasio/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...