Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fungal Biol ; 126(1): 82-90, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34930561

RESUMEN

Maize grown in both North and South America are now predominantly genetically modified (GM) cultivars with some resistance to herbicide, pesticide, or both. There is little information on the relative colonisation and aflatoxin B1 (AFB1) production with maize meal-based nutritional matrices based on kernels of non-GM maize and isogenic GM-ones by strains of Aspergillus flavus. The objectives were to examine the effect of interacting conditions of temperature (25-35 °C) and water availability (0.99-0.90 water activity, aw) on (a) mycelial growth, (b) AFB1 production and (c) develop contour maps of optimum and marginal conditions of these parameters for four strains of A. flavus on three different non-GM and isogenic GM-maize based nutritional media. The growth of the four strains of A. flavus (three aflatoxigenic; one non-aflatoxigenic) was relatively similar in relation to the temperature × aw conditions examined on both non-GM and GM-based matrices. Optimum growth overall was at 30-35 °C and 0.99 aw for all four strains. Under water stress (0.90 aw) growth was optimum at 35 °C. Statistically: non-GM, GM cultivars, temperature and aw all significantly affected growth rates. For AFB1 production, all single and interacting factors were statistically significant except for non-GM × GM cultivar. In conclusion, colonisation of GM- and non-GM nutritional sources was similar for the different A. flavus strains examined. The contour maps will be very useful for understanding the ecological niches for both toxigenic and non-toxigenic strains in the context of the competitive exclusion of those producing aflatoxins.


Asunto(s)
Aflatoxinas , Herbicidas , Aflatoxina B1 , Aspergillus flavus/genética , Zea mays
2.
Fungal Biol ; 125(2): 89-94, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33518209

RESUMEN

The aim was to decipher the temporal impact of key interacting climate change (CC) abiotic factors of temperature (30 vs 37 °C), water activity (aw; 0.985 vs 0.930) and CO2 exposure (400 vs 1000 ppm) on (a) growth of Aspergillus flavus and effects on (b) gene expression of a structural (aflD) and key regulatory gene (aflR) involved in aflatoxin B1 (AFB1) biosynthesis and (c) AFB1 production on a yeast extract sucrose medium over a period of 10 days. A. flavus grew and produced AFB1 very early with toxin detected after only 48 h. Both growth and toxin production were significantly impacted by the interacting abiotic factors. The relative expression of the aflD gene was significantly influenced by temperature; aflR gene expression was mainly modulated by time. However, no clear relationship was observed for both genes with AFB1 production over the experimental time frame. The optimum temperature for AFB1 production was 30 °C. Maximum AFB1 production occurred between days 4-8. Exposure to higher CO2 conditions simulating forecasted CC conditions resulted in the amount of AFB1 produced in elevated temperature (37 °C) being higher than with the optimum temperature (30 °C) showing a potential for increased risk for human/animal health due to higher accumulation of this toxin.


Asunto(s)
Aflatoxina B1 , Aspergillus flavus , Temperatura , Aflatoxina B1/genética , Aflatoxina B1/metabolismo , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Reguladores , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...