Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 495, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926717

RESUMEN

OBJECTIVE: While risk factors for osteoarthritis (OA) are well known, it is not well understood why certain individuals maintain high mobility and joint health throughout their life while others demonstrate OA at older ages. The purpose of this study was to assess which demographic, clinical and MRI quantitative and semi-quantitative factors are associated with preserving healthy knees in older individuals. METHODS: This study analyzed data from the OA Initiative (OAI) cohort of individuals at the age of 65 years or above. Participants without OA at baseline (BL) (Kellgren-Lawrence (KL) ≤ 1) were followed and classified as incident cases (KL ≥ 2 during follow-up; n = 115) and as non-incident (KL ≤ 1 over 96-month; n = 391). Associations between the predictor-variables sex, age, BMI, race, clinical scoring systems, T2 relaxation times and Whole-Organ Magnetic Resonance Imaging-Score (WORMS) readings at BL and the preservation of healthy knees (KL ≤ 1) during a 96-month follow-up period were assessed using logistic regression models. RESULTS: Obesity and presence of pain showed a significant inverse association with maintaining radiographically normal joints in patients aged 65 and above. T2 relaxation times of the lateral femur and tibia as well as the medial femur were also significantly associated with maintaining radiographically normal knee joints. Additionally, absence of lesions of the lateral meniscus and absence of cartilage lesions in the medial and patellofemoral compartments were significantly associated with maintaining healthy knee joints. CONCLUSION: Overall, this study provides protective clinical parameters as well as quantitative and semi-quantitative MR-imaging parameters associated with maintaining radiographically normal knee joints in an older population over 8 years.


Asunto(s)
Articulación de la Rodilla , Imagen por Resonancia Magnética , Osteoartritis de la Rodilla , Humanos , Masculino , Anciano , Femenino , Articulación de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/diagnóstico por imagen , Estudios de Seguimiento , Factores de Riesgo , Anciano de 80 o más Años , Obesidad/diagnóstico por imagen , Obesidad/epidemiología
2.
Eur Radiol Exp ; 8(1): 58, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735899

RESUMEN

BACKGROUND: Chondrosarcomas are rare malignant bone tumors diagnosed by analyzing radiological images and histology of tissue biopsies and evaluating features such as matrix calcification, cortical destruction, trabecular penetration, and tumor cell entrapment. METHODS: We retrospectively analyzed 16 cartilaginous tumor tissue samples from three patients (51-, 54-, and 70-year-old) diagnosed with a dedifferentiated chondrosarcoma at the femur, a moderately differentiated chondrosarcoma in the pelvis, and a predominantly moderately differentiated chondrosarcoma at the scapula, respectively. We combined a hematein-based x-ray staining with high-resolution three-dimensional (3D) microscopic x-ray computed tomography (micro-CT) for nondestructive 3D tumor assessment and tumor margin evaluation. RESULTS: We detected trabecular entrapment on 3D micro-CT images and followed bone destruction throughout the volume. In addition to staining cell nuclei, hematein-based staining also improved the visualization of the tumor matrix, allowing for the distinction between the tumor and the bone marrow cavity. The hematein-based staining did not interfere with further conventional histology. There was a 5.97 ± 7.17% difference between the relative tumor area measured using micro-CT and histopathology (p = 0.806) (Pearson correlation coefficient r = 0.92, p = 0.009). Signal intensity in the tumor matrix (4.85 ± 2.94) was significantly higher in the stained samples compared to the unstained counterparts (1.92 ± 0.11, p = 0.002). CONCLUSIONS: Using nondestructive 3D micro-CT, the simultaneous visualization of radiological and histopathological features is feasible. RELEVANCE STATEMENT: 3D micro-CT data supports modern radiological and histopathological investigations of human bone tumor specimens. It has the potential for being an integrative part of clinical preoperative diagnostics. KEY POINTS: • Matrix calcifications are a relevant diagnostic feature of bone tumors. • Micro-CT detects all clinically diagnostic relevant features of x-ray-stained chondrosarcoma. • Micro-CT has the potential to be an integrative part of clinical diagnostics.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , Estudios de Factibilidad , Imagenología Tridimensional , Microtomografía por Rayos X , Humanos , Condrosarcoma/diagnóstico por imagen , Condrosarcoma/patología , Microtomografía por Rayos X/métodos , Anciano , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/patología , Persona de Mediana Edad , Estudios Retrospectivos , Imagenología Tridimensional/métodos , Masculino , Femenino , Coloración y Etiquetado/métodos
3.
BMC Med Imaging ; 24(1): 43, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350900

RESUMEN

BACKGROUND: A deep learning (DL) model that automatically detects cardiac pathologies on cardiac MRI may help streamline the diagnostic workflow. To develop a DL model to detect cardiac pathologies on cardiac MRI T1-mapping and late gadolinium phase sensitive inversion recovery (PSIR) sequences were used. METHODS: Subjects in this study were either diagnosed with cardiac pathology (n = 137) including acute and chronic myocardial infarction, myocarditis, dilated cardiomyopathy, and hypertrophic cardiomyopathy or classified as normal (n = 63). Cardiac MR imaging included T1-mapping and PSIR sequences. Subjects were split 65/15/20% for training, validation, and hold-out testing. The DL models were based on an ImageNet pretrained DenseNet-161 and implemented using PyTorch and fastai. Data augmentation with random rotation and mixup was applied. Categorical cross entropy was used as the loss function with a cyclic learning rate (1e-3). DL models for both sequences were developed separately using similar training parameters. The final model was chosen based on its performance on the validation set. Gradient-weighted class activation maps (Grad-CAMs) visualized the decision-making process of the DL model. RESULTS: The DL model achieved a sensitivity, specificity, and accuracy of 100%, 38%, and 88% on PSIR images and 78%, 54%, and 70% on T1-mapping images. Grad-CAMs demonstrated that the DL model focused its attention on myocardium and cardiac pathology when evaluating MR images. CONCLUSIONS: The developed DL models were able to reliably detect cardiac pathologies on cardiac MR images. The diagnostic performance of T1 mapping alone is particularly of note since it does not require a contrast agent and can be acquired quickly.


Asunto(s)
Aprendizaje Profundo , Gadolinio , Humanos , Imagen por Resonancia Magnética/métodos , Miocardio/patología , Medios de Contraste , Pericardio
4.
Int J Cardiovasc Imaging ; 40(5): 1059-1066, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38421538

RESUMEN

OBJECTIVES: Especially patients with aortic aneurysms and multiple computed tomography angiographies (CTA) might show medical conditions which oppose the use of iodine-based contrast agents. CTA using monoenergetic reconstructions from dual layer CT and gadolinium (Gd-)based contrast agents might be a feasible alternative in these patients. Therefore, the purpose of this study was to evaluate the feasibility of clinical spectral CTA with a Gd-based contrast agent in patients with aortic aneurysms. METHODS: Twenty-one consecutive scans in 15 patients with and without endovascular aneurysm repair showing contraindications for iodine-based contrast agents were examined using clinical routine doses (0.2 mmol/kg) of Gd-based contrast agent with spectral CT. Monoenergetic reconstructions of the spectral data set were computed. RESULTS: There was a significant increase in the intravascular attenuation of the aorta between pre- and post-contrast images for the MonoE40 images in the thoracic and the abdominal aorta (p < 0.001 for both). Additionally, the ratio between pre- and post-contrast images was significantly higher in the MonoE40 images as compared to the conventional images with a factor of 6.5 ± 4.5 vs. 2.4 ± 0.5 in the thoracic aorta (p = 0.003) and 4.1 ± 1.8 vs. 1.9 ± 0.5 in the abdominal aorta (p < 0.001). CONCLUSIONS: To conclude, our study showed that Gd-CTA is a valid and reliable alternative for diagnostic imaging of the aorta for clinical applications. Monoenergetic reconstructions of computed tomography angiographies using gadolinium based contrast agents may be a useful alternative in patients with aortic aneurysms and contraindications for iodine based contrast agents.


Asunto(s)
Aortografía , Angiografía por Tomografía Computarizada , Medios de Contraste , Estudios de Factibilidad , Valor Predictivo de las Pruebas , Humanos , Medios de Contraste/administración & dosificación , Femenino , Anciano , Masculino , Persona de Mediana Edad , Aortografía/métodos , Compuestos Organometálicos/administración & dosificación , Anciano de 80 o más Años , Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/cirugía , Reproducibilidad de los Resultados , Aneurisma de la Aorta/diagnóstico por imagen , Estudios Retrospectivos
5.
Eur Radiol ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38388721

RESUMEN

OBJECTIVE: This study analyzes the potential cost-effectiveness of integrating an artificial intelligence (AI)-assisted system into the differentiation of incidental renal lesions as benign or malignant on MR images during follow-up. MATERIALS AND METHODS: For estimation of quality-adjusted life years (QALYs) and lifetime costs, a decision model was created, including the MRI strategy and MRI + AI strategy. Model input parameters were derived from recent literature. Willingness to pay (WTP) was set to $100,000/QALY. Costs of $0 for the AI were assumed in the base-case scenario. Model uncertainty and costs of the AI system were assessed using deterministic and probabilistic sensitivity analysis. RESULTS: Average total costs were at $8054 for the MRI strategy and $7939 for additional use of an AI-based algorithm. The model yielded a cumulative effectiveness of 8.76 QALYs for the MRI strategy and of 8.77 for the MRI + AI strategy. The economically dominant strategy was MRI + AI. Deterministic and probabilistic sensitivity analysis showed high robustness of the model with the incremental cost-effectiveness ratio (ICER), which represents the incremental cost associated with one additional QALY gained, remaining below the WTP for variation of the input parameters. If increasing costs for the algorithm, the ICER of $0/QALY was exceeded at $115, and the defined WTP was exceeded at $667 for the use of the AI. CONCLUSIONS: This analysis, rooted in assumptions, suggests that the additional use of an AI-based algorithm may be a potentially cost-effective alternative in the differentiation of incidental renal lesions using MRI and needs to be confirmed in the future. CLINICAL RELEVANCE STATEMENT: These results hint at AI's the potential impact on diagnosing renal masses. While the current study urges careful interpretation, ongoing research is essential to confirm and seamlessly integrate AI into clinical practice, ensuring its efficacy in routine diagnostics. KEY POINTS: • This is a model-based study using data from literature where AI has been applied in the diagnostic workup of incidental renal lesions. • MRI + AI has the potential to be a cost-effective alternative in the differentiation of incidental renal lesions. • The additional use of AI can reduce costs in the diagnostic workup of incidental renal lesions.

6.
Eur Radiol ; 34(7): 4321-4330, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38170264

RESUMEN

OBJECTIVE: The goals of this study were (i) to assess the association between hip capsule morphology and pain in patients without any other MRI abnormalities that would correlate with pain and (ii) to investigate whether hip capsule morphology in hip pain patients is different from that of controls. METHODS: In this study, 76 adults with hip pain who did not show any structural abnormalities on MRI and 46 asymptomatic volunteers were included. Manual segmentation of the anterior and posterior hip capsules was performed. Total and mean anterior hip capsule area, posterior capsule area, anterior-to-posterior capsule area ratio, and medial-to-lateral area ratio in the anterior capsule were quantified. Differences between the pain and control groups were evaluated using logistic regression models. RESULTS: Patients with hip pain showed a significantly lower anterior-to-posterior area ratio as compared with the control group (p = 0.002). The pain group's posterior hip capsule area was significantly larger than that of controls (p = 0.001). Additionally, the ratio between the medial and lateral sections of the anterior capsule was significantly lower in the pain group (p = 0.004). CONCLUSIONS: Patients with hip pain are more likely to have thicker posterior capsules and a lower ratio of the anterior-to-posterior capsule area and thinner medial anterior capsules with a lower ratio of the medial-to-lateral anterior hip capsule compartment, compared with controls. CLINICAL RELEVANCE STATEMENT: During MRI evaluations of patients with hip pain, morphology of the hip capsule should be assessed. This study aims to be a foundation for future analyses to identify thresholds distinguishing normal from abnormal hip capsule measurements. KEY POINTS: • Even with modern image modalities such as MRI, one of the biggest challenges in handling hip pain patients is finding a structural link for their pain. • Hip capsule morphologies that correlated with hip pain showed a larger posterior hip capsule area and a lower anterior-to-posterior capsule area ratio, as well as a smaller medial anterior capsule area with a lower medial-to-lateral anterior hip capsule ratio. • The hip capsule morphology is correlated with hip pain in patients who do not show other morphology abnormalities in MRI and should get more attention in clinical practice.


Asunto(s)
Articulación de la Cadera , Cápsula Articular , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Imagen por Resonancia Magnética/métodos , Cápsula Articular/diagnóstico por imagen , Cápsula Articular/patología , Adulto , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/patología , Persona de Mediana Edad , Artralgia/diagnóstico por imagen , Artralgia/etiología , Estudios de Casos y Controles , Anciano
7.
Eur Radiol ; 34(4): 2437-2444, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37691079

RESUMEN

OBJECTIVES: MR imaging-based proton density fat fraction (PDFF) and T2* imaging has shown to be useful for the evaluation of degenerative changes in the spine. Therefore, the aim of this study was to investigate the influence of myelotoxic chemotherapy on the PDFF and T2* of the thoracolumbar spine in comparison to changes in bone mineral density (BMD). METHODS: In this study, 19 patients were included who had received myelotoxic chemotherapy (MC) and had received a MR imaging scan of the thoracolumbar vertebrates before and after the MC. Every patient was matched for age, sex, and time between the MRI scans to two controls without MC. All patients underwent 3-T MR imaging including the thoracolumbar spine comprising chemical shift encoding-based water-fat imaging to extract PDFF and T2* maps. Moreover, trabecular BMD values were determined before and after chemotherapy. Longitudinal changes in PDFF and T2* were evaluated and compared to changes in BMD. RESULTS: Absolute mean differences of PDFF values between scans before and after MC were at 8.7% (p = 0.01) and at -0.5% (p = 0.57) in the control group, resulting in significantly higher changes in PDFF in patients with MC (p = 0.008). BMD and T2* values neither showed significant changes in patients with nor in those without myelotoxic chemotherapy (p = 0.15 and p = 0.47). There was an inverse, yet non-significant correlation between changes in PDFF and BMD found in patients with myelotoxic chemotherapy (r = -0.41, p = 0.12). CONCLUSION: Therefore, PDFF could be a useful non-invasive biomarker in order to detect changes in the bone marrow in patients receiving myelotoxic therapy. CLINICAL RELEVANCE STATEMENT: Using PDFF as a non-invasive biomarker for early bone marrow changes in oncologic patients undergoing myelotoxic treatment may help enable more targeted countermeasures at commencing states of bone marrow degradation and reduce risks of possible fragility fractures. KEY POINTS: Quantifying changes in bone marrow fat fraction, as well as T2* caused by myelotoxic pharmaceuticals using proton density fat fraction, is feasible. Proton density fat fraction could potentially be established as a non-invasive biomarker for early bone marrow changes in oncologic patients undergoing myelotoxic treatment.


Asunto(s)
Médula Ósea , Protones , Humanos , Médula Ósea/diagnóstico por imagen , Columna Vertebral , Imagen por Resonancia Magnética/métodos , Biomarcadores , Tejido Adiposo/diagnóstico por imagen
8.
J Magn Reson Imaging ; 59(5): 1542-1552, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37501387

RESUMEN

BACKGROUND: Several magnetic resonance (MR) techniques have been suggested for radiation-free imaging of osseous structures. PURPOSE: To compare the diagnostic value of ultra-short echo time and gradient echo T1-weighted MRI for the assessment of vertebral pathologies using histology and computed tomography (CT) as the reference standard. STUDY TYPE: Prospective. SUBJECTS: Fifty-nine lumbar vertebral bodies harvested from 20 human cadavers (donor age 73 ± 13 years; 9 male). FIELD STRENGTH/SEQUENCE: Ultra-short echo time sequence optimized for both bone (UTEb) and cartilage (UTEc) imaging and 3D T1-weighted gradient-echo sequence (T1GRE) at 3 T; susceptibility-weighted imaging (SWI) gradient echo sequence at 1.5 T. CT was performed on a dual-layer dual-energy CT scanner using a routine clinical protocol. ASSESSMENT: Histopathology and conventional CT were acquired as standard of reference. Semi-quantitative and quantitative morphological features of degenerative changes of the spines were evaluated by four radiologists independently on CT and MR images independently and blinded to all other information. Features assessed were osteophytes, endplate sclerosis, visualization of cartilaginous endplate, facet joint degeneration, presence of Schmorl's nodes, and vertebral dimensions. Vertebral disorders were assessed by a pathologist on histology. STATISTICAL TESTS: Agreement between T1GRE, SWI, UTEc, and UTEb sequences and CT imaging and histology as standard of reference were assessed using Fleiss' κ and intra-class correlation coefficients, respectively. RESULTS: For the morphological assessment of osteophytes and endplate sclerosis, the overall agreement between SWI, T1GRE, UTEb, and UTEc with the reference standard (histology combined with CT) was moderate to almost perfect for all readers (osteophytes: SWI, κ range: 0.68-0.76; T1GRE: 0.92-1.00; UTEb: 0.92-1.00; UTEc: 0.77-0.85; sclerosis: SWI, κ range: 0.60-0.70; T1GRE: 0.77-0.82; UTEb: 0.81-0.92; UTEc: 0.61-0.71). For the visualization of the cartilaginous endplate, UTEc showed the overall best agreement with the reference standard (histology) for all readers (κ range: 0.85-0.93). DATA CONCLUSIONS: Morphological assessment of vertebral pathologies was feasible and accurate using the MR-based bone imaging sequences compared to CT and histopathology. T1GRE showed the overall best performance for osseous changes and UTEc for the visualization of the cartilaginous endplate. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Osteofito , Humanos , Masculino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Prospectivos , Esclerosis , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos , Vértebras Lumbares/diagnóstico por imagen , Estándares de Referencia
9.
Bioengineering (Basel) ; 10(5)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37237586

RESUMEN

Background: Gadolinium (Gd)-enhanced Magnetic Resonance Imaging (MRI) is crucial in several applications, including oncology, cardiac imaging, and musculoskeletal inflammatory imaging. One use case is rheumatoid arthritis (RA), a widespread autoimmune condition for which Gd MRI is crucial in imaging synovial joint inflammation, but Gd administration has well-documented safety concerns. As such, algorithms that could synthetically generate post-contrast peripheral joint MR images from non-contrast MR sequences would have immense clinical utility. Moreover, while such algorithms have been investigated for other anatomies, they are largely unexplored for musculoskeletal applications such as RA, and efforts to understand trained models and improve trust in their predictions have been limited in medical imaging. Methods: A dataset of 27 RA patients was used to train algorithms that synthetically generated post-Gd IDEAL wrist coronal T1-weighted scans from pre-contrast scans. UNets and PatchGANs were trained, leveraging an anomaly-weighted L1 loss and global generative adversarial network (GAN) loss for the PatchGAN. Occlusion and uncertainty maps were also generated to understand model performance. Results: UNet synthetic post-contrast images exhibited stronger normalized root mean square error (nRMSE) than PatchGAN in full volumes and the wrist, but PatchGAN outperformed UNet in synovial joints (UNet nRMSEs: volume = 6.29 ± 0.88, wrist = 4.36 ± 0.60, synovial = 26.18 ± 7.45; PatchGAN nRMSEs: volume = 6.72 ± 0.81, wrist = 6.07 ± 1.22, synovial = 23.14 ± 7.37; n = 7). Occlusion maps showed that synovial joints made substantial contributions to PatchGAN and UNet predictions, while uncertainty maps showed that PatchGAN predictions were more confident within those joints. Conclusions: Both pipelines showed promising performance in synthesizing post-contrast images, but PatchGAN performance was stronger and more confident within synovial joints, where an algorithm like this would have maximal clinical utility. Image synthesis approaches are therefore promising for RA and synthetic inflammatory imaging.

10.
Bioengineering (Basel) ; 10(2)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36829761

RESUMEN

Magnetic Resonance Imaging (MRI) offers strong soft tissue contrast but suffers from long acquisition times and requires tedious annotation from radiologists. Traditionally, these challenges have been addressed separately with reconstruction and image analysis algorithms. To see if performance could be improved by treating both as end-to-end, we hosted the K2S challenge, in which challenge participants segmented knee bones and cartilage from 8× undersampled k-space. We curated the 300-patient K2S dataset of multicoil raw k-space and radiologist quality-checked segmentations. 87 teams registered for the challenge and there were 12 submissions, varying in methodologies from serial reconstruction and segmentation to end-to-end networks to another that eschewed a reconstruction algorithm altogether. Four teams produced strong submissions, with the winner having a weighted Dice Similarity Coefficient of 0.910 ± 0.021 across knee bones and cartilage. Interestingly, there was no correlation between reconstruction and segmentation metrics. Further analysis showed the top four submissions were suitable for downstream biomarker analysis, largely preserving cartilage thicknesses and key bone shape features with respect to ground truth. K2S thus showed the value in considering reconstruction and image analysis as end-to-end tasks, as this leaves room for optimization while more realistically reflecting the long-term use case of tools being developed by the MR community.

11.
Front Endocrinol (Lausanne) ; 13: 1046547, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465625

RESUMEN

Background: Quantitative magnetic resonance imaging (MRI) techniques such as chemical shift encoding-based water-fat separation techniques (CSE-MRI) are increasingly applied as noninvasive biomarkers to assess the biochemical composition of vertebrae. This study aims to investigate the longitudinal change of proton density fat fraction (PDFF) and T2* derived from CSE-MRI of the thoracolumbar vertebral bone marrow in patients that develop incidental vertebral compression fractures (VCFs), and whether PDFF and T2* enable the prediction of an incidental VCF. Methods: In this study we included 48 patients with CT-derived bone mineral density (BMD) measurements at baseline. Patients that presented an incidental VCF at follow up (N=12, mean age 70.5 ± 7.4 years, 5 female) were compared to controls without incidental VCF at follow up (N=36, mean age 71.1 ± 8.6 years, 15 females). All patients underwent 3T MRI, containing a significant part of the thoracolumbar spine (Th11-L4), at baseline, 6-month and 12 month follow up, including a gradient echo sequence for chemical shift encoding-based water-fat separation, from which PDFF and T2* maps were obtained. Associations between changes in PDFF, T2* and BMD measurements over 12 months and the group (incidental VCF vs. no VCF) were assessed using multivariable regression models. Mixed-effect regression models were used to test if there is a difference in the rate of change in PDFF, T2* and BMD between patients with and without incidental VCF. Results: Prior to the occurrence of an incidental VCF, PDFF in vertebrae increased in the VCF group (ΔPDFF=6.3 ± 3.1%) and was significantly higher than the change of PDFF in the group without VCF (ΔPDFF=2.1 ± 2.5%, P=0.03). There was no significant change in T2* (ΔT2*=1.7 ± 1.1ms vs. ΔT2*=1.1 ± 1.3ms, P=0.31) and BMD (ΔBMD=-1.2 ± 11.3mg/cm3 vs. ΔBMD=-11.4 ± 24.1mg/cm3, P= 0.37) between the two groups over 12 months. At baseline, no significant differences were detected in the average PDFF, T2* and BMD of all measured vertebrae (Th11-L4) between the VCF group and the group without VCF (P=0.66, P=0.35 and P= 0.21, respectively). When assessing the differences in rates of change, there was a significant change in slope for PDFF (2.32 per 6 months, 95% confidence interval (CI) 0.31-4.32; P=0.03) but not for T2* (0.02 per 6 months, CI -0.98-0.95; P=0.90) or BMD (-4.84 per 6 months, CI -23.4-13.7; P=0.60). Conclusions: In our study population, the average change of PDFF over 12 months is significantly higher in patients that develop incidental fractures at 12-month follow up compared to patients without incidental VCF, while T2* and BMD show no significant changes prior to the occurrence of the incidental vertebral fractures. Therefore, a longitudinal increase in bone marrow PDFF may be predictive for vertebral compression fractures.


Asunto(s)
Fracturas por Compresión , Fracturas de la Columna Vertebral , Humanos , Femenino , Persona de Mediana Edad , Anciano , Protones , Médula Ósea/diagnóstico por imagen , Fracturas por Compresión/diagnóstico por imagen , Fracturas de la Columna Vertebral/diagnóstico por imagen , Imagen por Resonancia Magnética , Agua
12.
Int J Cardiovasc Imaging ; 38(11): 2491-2500, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36434331

RESUMEN

This study aimed to prospectively evaluate delayed enhancement imaging by spectral computed tomography using soluble iodine containing contrast media to improve the in vivo characterization of coronary plaque types based on the quantification of delayed iodine enhancement. Patients with known or suspected coronary artery disease (CAD) underwent spectral coronary CT-angiography (SCCTA). Absolute delayed iodine enhancement in all visible coronary plaques was assessed. Patients with significant CAD (> 50% stenosis) further underwent invasive coronary angiography (ICA) including optical coherence tomography (OCT). We identified 50 non-calcified coronary plaques in 72 patients undergoing SCCTA. 17 patients with significant CAD underwent further ICA including OCT imaging. In those, we were able to match 35 plaques by both SCCTA and OCT. Based on OCT imaging, 22/35 matched plaques (63%) were characterized as high-risk coronary plaques (thin-cap fibroatheroma n = 2, fibroatheroma n = 20), whereas 13/35 (37%) were characterized as low-risk plaques (fibrocalcific lesion n = 3, fibrous plaques n = 9, and early-onset fibroatheroma n = 1). All plaques showed similar HU's and could not be classified into high-risk or low-risk plaques by conventional CT measures. Minimal delayed iodine enhancement within plaques as quantified by SCCTA demonstrated significantly lower values in high-risk as compared to low-risk coronary plaques (1.0 ± 1.5 mg/ml vs. 2.2 ± 1.1 mg/ml, p = 0.021) which allowed estimation of high-risk plaques with high sensitivity and moderate specificity (77% and 56%). Measurement of delayed enhancement iodine uptake within stable coronary artery plaques using dual-layer SCCTA might contribute to a more precise estimation of plaque vulnerability surpassing conventional CT techniques.


Asunto(s)
Enfermedad de la Arteria Coronaria , Yodo , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patología , Tomografía de Coherencia Óptica/métodos , Angiografía por Tomografía Computarizada , Valor Predictivo de las Pruebas , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/patología
13.
Commun Med (Lond) ; 2(1): 147, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411311

RESUMEN

BACKGROUND: Currently, alternative medical imaging methods for the assessment of pulmonary involvement in patients infected with COVID-19 are sought that combine a higher sensitivity than conventional (attenuation-based) chest radiography with a lower radiation dose than CT imaging. METHODS: Sixty patients with COVID-19-associated lung changes in a CT scan and 40 subjects without pathologic lung changes visible in the CT scan were included (in total, 100, 59 male, mean age 58 ± 14 years). All patients gave written informed consent. We employed a clinical setup for grating-based dark-field chest radiography, obtaining both a dark-field and a conventional attenuation image in one image acquisition. Attenuation images alone, dark-field images alone, and both displayed simultaneously were assessed for the presence of COVID-19-associated lung changes on a scale from 1 to 6 (1 = surely not, 6 = surely) by four blinded radiologists. Statistical analysis was performed by evaluation of the area under the receiver-operator-characteristics curves (AUC) using Obuchowski's method with a 0.05 level of significance. RESULTS: We show that dark-field imaging has a higher sensitivity for COVID-19-pneumonia than attenuation-based imaging and that the combination of both is superior to one imaging modality alone. Furthermore, a quantitative image analysis shows a significant reduction of dark-field signals for COVID-19-patients. CONCLUSIONS: Dark-field imaging complements and improves conventional radiography for the visualisation and detection of COVID-19-pneumonia.


Computed tomography (CT) imaging uses X-rays to obtain images of the inside of the body. It is used to look at lung damage in patients with COVID-19. However, CT imaging exposes the patient to a considerable amount of radiation. As radiation exposure can lead to the development of cancer, exposure should be minimised. Conventional plain X-ray imaging uses lower amounts of radiation but lacks sensitivity. We used dark-field chest X-ray imaging, which also uses low amounts of radiation, to assess the lungs of patients with COVID-19. Radiologists identified pneumonia in patients more easily from dark-field images than from usual plain X-ray images. We anticipate dark-field X-ray imaging will be useful to follow-up patients suspected of having lung damage.

14.
Diagnostics (Basel) ; 12(9)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36140587

RESUMEN

The differentiation between the atypical cartilaginous tumor (ACT) and the enchondromas is crucial as ACTs require a curettage and clinical as well as imaging follow-ups, whereas in the majority of cases enchondromas require neither a treatment nor follow-ups. Differentiating enchondromas from ACTs radiologically remains challenging. Therefore, this study evaluated imaging criteria in a combination of computed tomography (CT) and magnetic resonance (MR) imaging for the differentiation between enchondromas and ACTs in long bones. A total of 82 patients who presented consecutively at our institution with either an ACT (23, age 52.7 ±18.8 years; 14 women) or an enchondroma (59, age 46.0 ± 11.1 years; 37 women) over a period of 10 years, who had undergone preoperative MR and CT imaging and subsequent biopsy or/and surgical removal, were included in this study. A histopathological diagnosis was available in all cases. Two experienced radiologists evaluated several imaging criteria on CT and MR images. Likelihood of an ACT was significantly increased if either edema within the bone (p = 0.049), within the adjacent soft tissue (p = 0.006) or continuous growth pattern (p = 0.077) were present or if the fat entrapment (p = 0.027) was absent on MR images. Analyzing imaging features on CT, the likelihood of the diagnosis of an ACT was significantly increased if endosteal scalloping >2/3 (p < 0.001), cortical penetration (p < 0.001) and expansion of bone (p = 0.002) were present and if matrix calcifications were observed in less than 1/3 of the tumor (p = 0.013). All other imaging criteria evaluated showed no significant influence on likelihood of ACT or enchondroma (p > 0.05). In conclusion, both CT and MR imaging show suggestive signs which can help to adequately differentiate enchondromas from ACTs in long bones and therefore can improve diagnostics and consequently patient management. Nevertheless, these features are rare and a combination of CT and MR imaging features did not improve the diagnostic performance substantially.

15.
Eur J Nucl Med Mol Imaging ; 49(11): 3870-3877, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35606526

RESUMEN

BACKGROUND AND PURPOSE: Treatment of oral squamous cell carcinoma (OSCC) is based on clinical exam, biopsy, and a precise imaging-based TNM-evaluation. A high sensitivity and specificity for magnetic resonance imaging (MRI) and F-18 FDG PET/CT are reported for N-staging. Nevertheless, staging of oral squamous cell carcinoma is most often based on computed tomography (CT) scans. This study aims to evaluate cost-effectiveness of MRI and PET/CT compared to standard of care imaging in initial staging of OSCC within the US Healthcare System. METHODS: A decision model was constructed using quality-adjusted life years (QALYs) and overall costs of different imaging strategies including a CT of the head, neck, and the thorax, MRI of the neck with CT of the thorax, and whole body F-18 FDG PET/CT using Markov transition simulations for different disease states. Input parameters were derived from literature and willingness to pay (WTP) was set to US $100,000/QALY. Deterministic sensitivity analysis of diagnostic parameters and costs was performed. Monte Carlo modeling was used for probabilistic sensitivity analysis. RESULTS: In the base-case scenario, total costs were at US $239,628 for CT, US $240,001 for MRI, and US $239,131 for F-18 FDG PET/CT whereas the model yielded an effectiveness of 5.29 QALYs for CT, 5.30 QALYs for MRI, and 5.32 QALYs for F-18 FDG PET/CT respectively. F-18 FDG PET/CT was the most cost-effective strategy over MRI as well as CT, and MRI was the cost-effective strategy over CT. Deterministic and probabilistic sensitivity analysis showed high robustness of the model with incremental cost effectiveness ratio remaining below US $100,000/QALY for a wide range of variability of input parameters. CONCLUSION: F-18 FDG PET/CT is the most cost-effective strategy in the initial N-staging of OSCC when compared to MRI and CT. Despite less routine use, both whole body PET/CT and MRI are cost-effective modalities in the N-staging of OSCC. Based on these findings, the implementation of PET/CT for initial staging could be suggested to help reduce costs while increasing effectiveness in OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/patología , Análisis Costo-Beneficio , Fluorodesoxiglucosa F18 , Neoplasias de Cabeza y Cuello/patología , Humanos , Imagen por Resonancia Magnética , Neoplasias de la Boca/diagnóstico por imagen , Neoplasias de la Boca/patología , Estadificación de Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Radiofármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Tomografía Computarizada por Rayos X
16.
Eur Radiol ; 32(9): 6247-6257, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35396665

RESUMEN

OBJECTIVES: To develop and validate machine learning models to distinguish between benign and malignant bone lesions and compare the performance to radiologists. METHODS: In 880 patients (age 33.1 ± 19.4 years, 395 women) diagnosed with malignant (n = 213, 24.2%) or benign (n = 667, 75.8%) primary bone tumors, preoperative radiographs were obtained, and the diagnosis was established using histopathology. Data was split 70%/15%/15% for training, validation, and internal testing. Additionally, 96 patients from another institution were obtained for external testing. Machine learning models were developed and validated using radiomic features and demographic information. The performance of each model was evaluated on the test sets for accuracy, area under the curve (AUC) from receiver operating characteristics, sensitivity, and specificity. For comparison, the external test set was evaluated by two radiology residents and two radiologists who specialized in musculoskeletal tumor imaging. RESULTS: The best machine learning model was based on an artificial neural network (ANN) combining both radiomic and demographic information achieving 80% and 75% accuracy at 75% and 90% sensitivity with 0.79 and 0.90 AUC on the internal and external test set, respectively. In comparison, the radiology residents achieved 71% and 65% accuracy at 61% and 35% sensitivity while the radiologists specialized in musculoskeletal tumor imaging achieved an 84% and 83% accuracy at 90% and 81% sensitivity, respectively. CONCLUSIONS: An ANN combining radiomic features and demographic information showed the best performance in distinguishing between benign and malignant bone lesions. The model showed lower accuracy compared to specialized radiologists, while accuracy was higher or similar compared to residents. KEY POINTS: • The developed machine learning model could differentiate benign from malignant bone tumors using radiography with an AUC of 0.90 on the external test set. • Machine learning models that used radiomic features or demographic information alone performed worse than those that used both radiomic features and demographic information as input, highlighting the importance of building comprehensive machine learning models. • An artificial neural network that combined both radiomic and demographic information achieved the best performance and its performance was compared to radiology readers on an external test set.


Asunto(s)
Neoplasias Óseas , Aprendizaje Automático , Adolescente , Adulto , Neoplasias Óseas/diagnóstico por imagen , Femenino , Humanos , Persona de Mediana Edad , Radiografía , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Rayos X , Adulto Joven
17.
Eur Radiol ; 32(4): 2448-2456, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34837511

RESUMEN

OBJECTIVE: Pancreatic cancer is portrayed to become the second leading cause of cancer-related death within the next years. Potentially complicating surgical resection emphasizes the importance of an accurate TNM classification. In particular, the failure to detect features for non-resectability has profound consequences on patient outcomes and economic costs due to incorrect indication for resection. In the detection of liver metastases, contrast-enhanced MRI showed high sensitivity and specificity; however, the cost-effectiveness compared to the standard of care imaging remains unclear. The aim of this study was to analyze whether additional MRI of the liver is a cost-effective approach compared to routinely acquired contrast-enhanced computed tomography (CE-CT) in the initial staging of pancreatic cancer. METHODS: A decision model based on Markov simulation was developed to estimate the quality-adjusted life-years (QALYs) and lifetime costs of the diagnostic modalities. Model input parameters were assessed based on evidence from recent literature. The willingness-to-pay (WTP) was set to $100,000/QALY. To evaluate model uncertainty, deterministic and probabilistic sensitivity analyses were performed. RESULTS: In the base-case analysis, the model yielded a total cost of $185,597 and an effectiveness of 2.347 QALYs for CE-MR/CT and $187,601 and 2.337 QALYs for CE-CT respectively. With a net monetary benefit (NMB) of $49,133, CE-MR/CT is shown to be dominant over CE-CT with a NMB of $46,117. Deterministic and probabilistic survival analysis showed model robustness for varying input parameters. CONCLUSION: Based on our results, combined CE-MR/CT can be regarded as a cost-effective imaging strategy for the staging of pancreatic cancer. KEY POINTS: • Additional MRI of the liver for initial staging of pancreatic cancer results in lower total costs and higher effectiveness. • The economic model showed high robustness for varying input parameters.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias Pancreáticas , Análisis Costo-Beneficio , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias Pancreáticas/diagnóstico por imagen , Años de Vida Ajustados por Calidad de Vida , Tomografía Computarizada por Rayos X
18.
Radiology ; 301(2): 398-406, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34491126

RESUMEN

Background An artificial intelligence model that assesses primary bone tumors on radiographs may assist in the diagnostic workflow. Purpose To develop a multitask deep learning (DL) model for simultaneous bounding box placement, segmentation, and classification of primary bone tumors on radiographs. Materials and Methods This retrospective study analyzed bone tumors on radiographs acquired prior to treatment and obtained from patient data from January 2000 to June 2020. Benign or malignant bone tumors were diagnosed in all patients by using the histopathologic findings as the reference standard. By using split-sample validation, 70% of the patients were assigned to the training set, 15% were assigned to the validation set, and 15% were assigned to the test set. The final performance was evaluated on an external test set by using geographic validation, with accuracy, sensitivity, specificity, and 95% CIs being used for classification, the intersection over union (IoU) being used for bounding box placements, and the Dice score being used for segmentations. Results Radiographs from 934 patients (mean age, 33 years ± 19 [standard deviation]; 419 women) were evaluated in the internal data set, which included 667 benign bone tumors and 267 malignant bone tumors. Six hundred fifty-four patients were in the training set, 140 were in the validation set, and 140 were in the test set. One hundred eleven patients were in the external test set. The multitask DL model achieved 80.2% (89 of 111; 95% CI: 72.8, 87.6) accuracy, 62.9% (22 of 35; 95% CI: 47, 79) sensitivity, and 88.2% (67 of 76; CI: 81, 96) specificity in the classification of bone tumors as malignant or benign. The model achieved an IoU of 0.52 ± 0.34 for bounding box placements and a mean Dice score of 0.60 ± 0.37 for segmentations. The model accuracy was higher than that of two radiologic residents (71.2% and 64.9%; P = .002 and P < .001, respectively) and was comparable with that of two musculoskeletal fellowship-trained radiologists (83.8% and 82.9%; P = .13 and P = .25, respectively) in classifying a tumor as malignant or benign. Conclusion The developed multitask deep learning model allowed for accurate and simultaneous bounding box placement, segmentation, and classification of primary bone tumors on radiographs. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Carrino in this issue.


Asunto(s)
Neoplasias Óseas/diagnóstico por imagen , Aprendizaje Profundo , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía/métodos , Adulto , Huesos/diagnóstico por imagen , Femenino , Humanos , Masculino , Estudios Retrospectivos
19.
Quant Imaging Med Surg ; 11(8): 3715-3725, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34341744

RESUMEN

BACKGROUND: Chemical shift encoding-based water-fat separation techniques have been used for fat quantification [proton density fat fraction (PDFF)], but they also enable the assessment of bone marrow T2*, which has previously been reported to be a potential biomarker for osteoporosis and may give insight into the cause of vertebral fractures (i.e., osteoporotic vs. traumatic) and the microstructure of the bone when applied to vertebral bone marrow. METHODS: The 32 patients (78.1% with low-energy osteopenic/osteoporotic fractures, mean age 72.3±9.8 years, 76% women; 21.9% with high-energy traumatic fractures, 47.3±12.8 years, no women) were frequency-matched for age and sex to subjects without vertebral fractures (n=20). All study patients underwent 3T-MRI of the lumbar spine including sagittally acquired spoiled gradient echo sequences for chemical shift encoding-based water-fat separation, from which T2* values were obtained. Volumetric trabecular bone mineral density (BMD) and trabecular bone parameters describing the three-dimensional structural integrity of trabecular bone were derived from quantitative CT. Associations between T2* measurements, fracture status and trabecular bone parameters were assessed using multivariable linear regression models. RESULTS: Mean T2* values of non fractured vertebrae in all patients showed a significant correlation with BMD (r=-0.65, P<0.001), trabecular number (TbN) (r=-0.56, P<0.001) and trabecular spacing (TbSp) (r=0.61, P<0.001); patients with low-energy osteoporotic vertebral fractures showed significantly higher mean T2* values than those with traumatic fractures (13.6±4.3 vs. 8.4±2.2 ms, P=0.01) as well as a significantly lower TbN (0.69±0.08 vs. 0.93±0.03 mm-1, P<0.01) and a significantly larger trabecular spacing (1.06±0.16 vs. 0.56±0.08 mm, P<0.01). Mean T2* values of osteoporotic patients with and without vertebral fracture showed no significant difference (13.5±3.4 vs. 15.6±3.5 ms, P=0.40). When comparing the mean T2* of the fractured vertebrae, no significant difference could be detected between low-energy osteoporotic fractures and high-energy traumatic fractures (12.6±5.4 vs. 8.1±2.4 ms, P=0.10). CONCLUSIONS: T2* mapping of vertebral bone marrow using using chemical shift encoding-based water-fat separation allows for assessing osteoporosis as well as the trabecular microstructure and enables a radiation-free differentiation between patients with low-energy osteoporotic and high-energy traumatic vertebral fractures, suggesting its potential as a biomarker for bone fragility.

20.
Sci Rep ; 11(1): 15857, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349135

RESUMEN

We present a method to generate synthetic thorax radiographs with realistic nodules from CT scans, and a perfect ground truth knowledge. We evaluated the detection performance of nine radiologists and two convolutional neural networks in a reader study. Nodules were artificially inserted into the lung of a CT volume and synthetic radiographs were obtained by forward-projecting the volume. Hence, our framework allowed for a detailed evaluation of CAD systems' and radiologists' performance due to the availability of accurate ground-truth labels for nodules from synthetic data. Radiographs for network training (U-Net and RetinaNet) were generated from 855 CT scans of a public dataset. For the reader study, 201 radiographs were generated from 21 nodule-free CT scans with altering nodule positions, sizes and nodule counts of inserted nodules. Average true positive detections by nine radiologists were 248.8 nodules, 51.7 false positive predicted nodules and 121.2 false negative predicted nodules. The best performing CAD system achieved 268 true positives, 66 false positives and 102 false negatives. Corresponding weighted alternative free response operating characteristic figure-of-merits (wAFROC FOM) for the radiologists range from 0.54 to 0.87 compared to a value of 0.81 (CI 0.75-0.87) for the best performing CNN. The CNN did not perform significantly better against the combined average of the 9 readers (p = 0.49). Paramediastinal nodules accounted for most false positive and false negative detections by readers, which can be explained by the presence of more tissue in this area.


Asunto(s)
Nódulos Pulmonares Múltiples/diagnóstico , Redes Neurales de la Computación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía Torácica/métodos , Radiólogos/estadística & datos numéricos , Nódulo Pulmonar Solitario/diagnóstico , Humanos , Variaciones Dependientes del Observador , Curva ROC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...