Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Health Perspect ; 130(2): 27003, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35112925

RESUMEN

BACKGROUND: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. OBJECTIVES: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (ß-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI). METHODS: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and ß-pinene (SOAßPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. RESULTS: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAßPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. DISCUSSION: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with ß-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413.


Asunto(s)
Contaminantes Atmosféricos , Hollín , Aerosoles/análisis , Anciano , Envejecimiento , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Células Endoteliales/química , Células Endoteliales/metabolismo , Humanos , Pulmón/metabolismo , Material Particulado/análisis
2.
Front Microbiol ; 12: 744117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858365

RESUMEN

The atmosphere plays an important role in transporting microorganisms on a global scale, yet the processes affecting the composition of the airborne microbiome, the aerobiome, are not fully outlined. Here we present the community compositions of bacteria and fungi obtained by DNA amplicon-sequencing of aerosol samples collected in a size-resolved manner during nine consecutive days in central Israel. The campaign captured dust events originating from the Sahara and the Arabian deserts, as well as days without dust ("clear days"). We found that the source of the aerosol was the main variable contributing to the composition of both fungal and bacterial communities. Significant differences were also observed between communities representing particles of different sizes. We show evidence for the significant transport of bacteria as cell-aggregates and/or via bacterial attachment to particles during dust events. Our findings further point to the mixing of local and transported bacterial communities, observed mostly in particles smaller than 0.6 µm in diameter, representing bacterial single cells. Fungal communities showed the highest dependence on the source of the aerosols, along with significant daily variability, and without significant mixing between sources, possibly due to their larger aerodynamic size and shorter atmospheric residence times. These results, obtained under highly varied atmospheric conditions, provide significant assurances to previously raised hypotheses and could set the course for future studies on aerobiome composition.

3.
Sci Rep ; 10(1): 13019, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32747737

RESUMEN

Atrazine is an herbicide and a pollutant of great environmental concern that is naturally biodegraded by microbial communities. Paenarthrobacter aurescens TC1 is one of the most studied degraders of this herbicide. Here, we developed a genome scale metabolic model for P. aurescens TC1, iRZ1179, to study the atrazine degradation process at organism level. Constraint based flux balance analysis and time dependent simulations were used to explore the organism's phenotypic landscape. Simulations aimed at designing media optimized for supporting growth and enhancing degradation, by passing the need in strain design via genetic modifications. Growth and degradation simulations were carried with more than 100 compounds consumed by P. aurescens TC1. In vitro validation confirmed the predicted classification of different compounds as efficient, moderate or poor stimulators of growth. Simulations successfully captured previous reports on the use of glucose and phosphate as bio-stimulators of atrazine degradation, supported by in vitro validation. Model predictions can go beyond supplementing the medium with a single compound and can predict the growth outcomes for higher complexity combinations. Hence, the analysis demonstrates that the exhaustive power of the genome scale metabolic reconstruction allows capturing complexities that are beyond common biochemical expertise and knowledge and further support the importance of computational platforms for the educated design of complex media. The model presented here can potentially serve as a predictive tool towards achieving optimal biodegradation efficiencies and for the development of ecologically friendly solutions for pollutant degradation.


Asunto(s)
Atrazina/metabolismo , Genoma Bacteriano , Herbicidas/metabolismo , Micrococcaceae/metabolismo , Biodegradación Ambiental , Microbiota , Micrococcaceae/genética , Contaminantes del Suelo/metabolismo
4.
Sci Total Environ ; 725: 138227, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32302827

RESUMEN

The composition of atmospheric aerosols is dynamic and influenced by their emission sources, organic and inorganic composition, transport pathways, chemical and physical processes, microorganisms' content and more. Characterization of such factors can improve the ability to evaluate air quality and health risks under different atmospheric scenarios. Here we investigate the microbial composition of the atmospheric particulate matter (<10 µm; PM10), sampled in Bolu, Turkey, and the linkage to the chemical composition changes, and different environmental factors. We show distinct differences between aerosol composition of different sources and air-mass transport patterns, sampled in July-August 2017 and in February 2018. The summer samples had a typical northern component air mass trajectories and higher local wind speed. They were characterized by high PM10 levels, marine and mineral dust tracers and high relative abundance of Ascomycota, suggesting long-range transport of the particles from remote sources. In contrast, samples collected in February were characterized by a dominant contribution of southern air masses, and low wind speed. They had low PM10 values, higher relative abundance of antibiotic resistance genes and anthropogenic ions related to local industries and farming, suggesting a dominance of local sources. With the microbiome analyses reported here for the first time for this region, we show good agreement between airborne microbial composition, aerosol mass load, chemistry, and meteorology. These results allow better air quality evaluation and prediction capabilities.


Asunto(s)
Contaminantes Atmosféricos/análisis , Meteorología , Microbiota , Aerosoles/análisis , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado/análisis , Estaciones del Año , Turquía
5.
ISME J ; 13(2): 494-508, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30291327

RESUMEN

Microbial communities play a vital role in biogeochemical cycles, allowing the biodegradation of a wide range of pollutants. The composition of the community and the interactions between its members affect degradation rate and determine the identity of the final products. Here, we demonstrate the application of sequencing technologies and metabolic modeling approaches towards enhancing biodegradation of atrazine-a herbicide causing environmental pollution. Treatment of agriculture soil with atrazine is shown to induce significant changes in community structure and functional performances. Genome-scale metabolic models were constructed for Arthrobacter, the atrazine degrader, and four other non-atrazine degrading species whose relative abundance in soil was changed following exposure to the herbicide. By modeling community function we show that consortia including the direct degrader and non-degrader differentially abundant species perform better than Arthrobacter alone. Simulations predict that growth/degradation enhancement is derived by metabolic exchanges between community members. Based on simulations we designed endogenous consortia optimized for enhanced degradation whose performances were validated in vitro and biostimulation strategies that were tested in pot experiments. Overall, our analysis demonstrates that understanding community function in its wider context, beyond the single direct degrader perspective, promotes the design of biostimulation strategies.


Asunto(s)
Arthrobacter/metabolismo , Atrazina/química , Atrazina/toxicidad , Biodegradación Ambiental , Microbiología del Suelo , Herbicidas/química , Herbicidas/toxicidad , Microbiota/efectos de los fármacos , Suelo/química , Contaminantes del Suelo/química , Contaminantes del Suelo/toxicidad
6.
Chemosphere ; 184: 524-531, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28622648

RESUMEN

Microbially induced CaCO3 precipitation (MICP) via urea hydrolysis is an emerging technique for soil amelioration, building materials rehabilitation and pollutants sequestration amongst other various environmental applications. The successful application of MICP requires the sustainability of the precipitated CaCO3; to which the fate of ammonia, the main by-product of ureolysis, is potentially significante. Ammonia volatilization and biological ammonia oxidation both induce a pH decrease, which, in turn, might cause CaCO3 dissolution. To examine the potential effect of accumulated ammonia on precipitated CaCO3, we conducted a long-term MICP batch experiment, using environmental enrichment cultures of ureolytic bacteria. Here we show that CaCO3 precipitation was completed within 15-27 days, along with a rise in ammonium concentration. Following completion of ureolysis and precipitation, ammonium concentrations decreased, leading to a pH decrease. About 30 days after precipitation was completed, as much as 30% CaCO3 dissolution, was observed. A two-step model, describing urea hydrolysis followed by the removal of ammonia from the precipitation solution, predicted CaCO3 dissolution due to ammonia volatilization. We suggest that ureolytic MICP might result in ammonia volatilization, leading to significant CaCO3 dissolution. These results provide basic insights into the sustainability of ureolytic MICP and should further encourage removal of the accumulated ammonia from the treated site.


Asunto(s)
Bacterias/metabolismo , Carbonato de Calcio/química , Precipitación Química , Amoníaco/química , Restauración y Remediación Ambiental , Hidrólisis , Oxidación-Reducción , Suelo/química , Solubilidad , Urea/química , Agua
7.
Environ Sci Technol ; 51(12): 6709-6718, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28422476

RESUMEN

Microorganisms carried by dust storms are transported through the atmosphere and may affect human health and the functionality of microbial communities in various environments. Characterizing the dust-borne microbiome in dust storms of different origins or that followed different trajectories provides valuable data to improve our understanding of global health and environmental impacts. We present a comparative study on the diversity of dust-borne bacterial communities in dust storms from three distinct origins (North Africa, Syria and Saudi Arabia) and compare them with local bacterial communities sampled on clear days, all collected at a single location: Rehovot, Israel. Storms from different dust origins exhibited distinct bacterial communities, with signature bacterial taxa. Dust storms were characterized by a lower abundance of selected antibiotic resistance genes (ARGs) compared with ambient dust, asserting that the origin of these genes is local and possibly anthropogenic. With the progression of the storm, the storm-borne bacterial community showed increasing resemblance to ambient dust, suggesting mixing with local dust. These results show, for the first time, that dust storms from different sources display distinct bacterial communities, suggesting possible diverse effects on the environment and public health.


Asunto(s)
Polvo , Microbiota , África del Norte , Salud Ambiental , Humanos , Israel , Arabia Saudita
8.
Environ Sci Technol ; 50(2): 616-24, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26689904

RESUMEN

Microbial-induced CaCO3 precipitation (MICP) via urea-hydrolysis (ureolysis) is an emerging soil improvement technique for various civil engineering and environmental applications. In-situ application of MICP in soils is performed either by augmenting the site with ureolytic bacteria or by stimulating indigenous ureolytic bacteria. Both of these approaches may lead to changes in the indigenous bacterial population composition and to the accumulation of large quantities of ammonium. In this batch study, effective ureolysis was stimulated in coastal sand from a semiarid environment, with low initial ureolytic bacteria abundance. Two different carbon sources were used: yeast-extract and molasses. No ureolysis was observed in their absence. Ureolysis was achieved using both carbon sources, with a higher rate in the yeast-extract enrichment resulting from increased bacterial growth. The changes to the indigenous bacterial population following biostimulation of ureolysis were significant: Bacilli class abundancy increased from 5% in the native sand up to 99% in the yeast-extract treatment. The sand was also enriched with ammonium-chloride, where ammonia-oxidation was observed after 27 days, but was not reflected in the bacterial population composition. These results suggest that biostimulation of ureolytic bacteria can be applied even in a semiarid and nutrient-poor environment using a simple carbon source, that is, molasses. The significant changes to bacterial population composition following ureolysis stimulation could result in a decrease in trophic activity and diversity in the treated site, thus they require further attention.


Asunto(s)
Bacterias/metabolismo , Microbiología del Suelo , Urea/metabolismo , Bacterias/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Clima Desértico , Hidrólisis , Israel , Melaza , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Dióxido de Silicio , Levaduras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...