Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Science ; 384(6694): eadf5489, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662826

RESUMEN

Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.


Asunto(s)
Axonema , Centriolos , Cilios , Trastornos de la Motilidad Ciliar , Tubulina (Proteína) , Animales , Humanos , Ratones , Axonema/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/metabolismo , Mutación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Masculino , Femenino , Ratones Noqueados
2.
Nat Commun ; 14(1): 5942, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741838

RESUMEN

The double-ring AAA+ ATPase Pex1/Pex6 is required for peroxisomal receptor recycling and is essential for peroxisome formation. Pex1/Pex6 mutations cause severe peroxisome associated developmental disorders. Despite its pathophysiological importance, mechanistic details of the heterohexamer are not yet available. Here, we report cryoEM structures of Pex1/Pex6 from Saccharomyces cerevisiae, with an endogenous protein substrate trapped in the central pore of the catalytically active second ring (D2). Pairs of Pex1/Pex6(D2) subdomains engage the substrate via a staircase of pore-1 loops with distinct properties. The first ring (D1) is catalytically inactive but undergoes significant conformational changes resulting in alternate widening and narrowing of its pore. These events are fueled by ATP hydrolysis in the D2 ring and disengagement of a "twin-seam" Pex1/Pex6(D2) heterodimer from the staircase. Mechanical forces are propagated in a unique manner along Pex1/Pex6 interfaces that are not available in homo-oligomeric AAA-ATPases. Our structural analysis reveals the mechanisms of how Pex1 and Pex6 coordinate to achieve substrate translocation.


Asunto(s)
Peroxisomas , ATPasas de Translocación de Protón , Proteínas de Saccharomyces cerevisiae , ATPasas Asociadas con Actividades Celulares Diversas/genética , Microscopía por Crioelectrón , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato
3.
J Am Chem Soc ; 145(16): 8882-8895, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37053499

RESUMEN

Solute-solvent interactions play a critical role in multiple fields, including biology, materials science, and (physical) organic, polymer, and supramolecular chemistry. Within the growing field of supramolecular polymer science, these interactions have been recognized as an important driving force for (entropically driven) intermolecular association, particularly in aqueous media. However, to date, solute-solvent effects remain poorly understood in the context of complex self-assembly energy landscapes and pathway complexity. Herein, we unravel the role of solute-solvent interactions in controlling chain conformation effects, allowing energy landscape modulation and pathway selection in aqueous supramolecular polymerization. To this end, we have designed a series of oligo(phenylene ethynylene) (OPE)-based bolaamphiphilic Pt(II) complexes OPE2-4 bearing solubilizing triethylene glycol (TEG) chains of equal length on both molecule ends, but a different size of the hydrophobic aromatic scaffold. Strikingly, detailed self-assembly studies in aqueous media disclose a different tendency of the TEG chains to fold back and enwrap the hydrophobic molecular component depending on both the size of the core and the volume fraction of the co-solvent (THF). The relatively small hydrophobic component of OPE2 can be readily shielded by the TEG chains, leading to only one aggregation pathway. In contrast, the decreased capability of the TEG chains to effectively shield larger hydrophobic cores (OPE3 and OPE4) enables different types of solvent quality-dependent conformations (extended, partly back-folded and back-folded), which in turn induce various controllable aggregation pathways with distinct morphologies and mechanisms. Our results shed light on previously underappreciated solvent-dependent chain conformation effects and their role in governing pathway complexity in aqueous media.

4.
Biol Chem ; 404(4): 241-254, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36809224

RESUMEN

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.


Asunto(s)
Canal de Potasio KCNQ1 , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Sitios de Unión , Mutación , Membrana Celular/metabolismo
5.
Cell Commun Signal ; 21(1): 35, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782237

RESUMEN

BACKGROUND: Extracellular vesicles (EVs), including small EVs (sEVs) such as exosomes, exhibit great potential for the diagnosis and treatment of brain disorders, representing a valuable tool for precision medicine. The latter demands high-quality human biospecimens, especially in complex disorders in which pathological and specimen heterogeneity, as well as diverse individual clinical profile, often complicate the development of precision therapeutic schemes and patient-tailored treatments. Thus, the collection and characterization of physiologically relevant sEVs are of the utmost importance. However, standard brain EV isolation approaches rely on tissue dissociation, which can contaminate EV fractions with intracellular vesicles. METHODS: Based on multiscale analytical platforms such as cryo-EM, label-free proteomics, advanced flow cytometry, and ExoView analyses, we compared and characterized the EV fraction isolated with this novel method with a classical digestion-based EV isolation procedure. Moreover, EV biogenesis was pharmacologically manipulated with either GW4869 or picrotoxin to assess the validity of the spontaneous-release method, while the injection of labelled-EVs into the mouse brain further supported the integrity of the isolated vesicles. RESULTS: We hereby present an efficient purification method that captures a sEV-enriched population spontaneously released by mouse and human brain tissue. In addition, we tested the significance of the release method under conditions where biogenesis/secretion of sEVs was pharmacologically manipulated, as well as under animals' exposure to chronic stress, a clinically relevant precipitant of brain pathologies, such as depression and Alzheimer's disease. Our findings show that the released method monitors the drug-evoked inhibition or enhancement of sEVs secretion while chronic stress induces the secretion of brain exosomes accompanied by memory loss and mood deficits suggesting a potential role of sEVs in the brain response to stress and related stress-driven brain pathology. CONCLUSIONS: Overall, the spontaneous release method of sEV yield may contribute to the characterization and biomarker profile of physiologically relevant brain-derived sEVs in brain function and pathology. Video Abstract.


Asunto(s)
Enfermedad de Alzheimer , Exosomas , Vesículas Extracelulares , Humanos , Animales , Ratones , Encéfalo , Biomarcadores
6.
Biol Chem ; 404(2-3): 195-207, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36694962

RESUMEN

Oxalyl-CoA synthetase from Saccharomyces cerevisiae is one of the most abundant peroxisomal proteins in yeast and hence has become a model to study peroxisomal translocation. It contains a C-terminal Peroxisome Targeting Signal 1, which however is partly dispensable, suggesting additional receptor bindings sites. To unravel any additional features that may contribute to its capacity to be recognized as peroxisomal target, we determined its assembly and overall architecture by an integrated structural biology approach, including X-ray crystallography, single particle cryo-electron microscopy and small angle X-ray scattering. Surprisingly, it assembles into mixture of concentration-dependent dimers, tetramers and hexamers by dimer self-association. Hexameric particles form an unprecedented asymmetric horseshoe-like arrangement, which considerably differs from symmetric hexameric assembly found in many other protein structures. A single mutation within the self-association interface is sufficient to abolish any higher-level oligomerization, resulting in a homogenous dimeric assembly. The small C-terminal domain of yeast Oxalyl-CoA synthetase is connected by a partly flexible hinge with the large N-terminal domain, which provides the sole basis for oligomeric assembly. Our data provide a basis to mechanistically study peroxisomal translocation of this target.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Microcuerpos/química , Microcuerpos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligasas/análisis , Ligasas/metabolismo
7.
Biol Chem ; 404(2-3): 107-119, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36117327

RESUMEN

Peroxisomal integrity and function are highly dependent on its membrane and soluble (matrix) components. Matrix enzymes are imported post-translationally in a folded or even oligomeric state, via a still mysterious protein translocation mechanism. They are guided to peroxisomes via the Peroxisomal Targeting Signal (PTS) sequences which are recognized by specific cytosolic receptors, Pex5, Pex7 and Pex9. Subsequently, cargo-loaded receptors bind to the docking complex in an initial step, followed by channel formation, cargo-release, receptor-recycling and -quality control. The docking complexes of different species share Pex14 as their core component but differ in composition and oligomeric state of Pex14. Here we review and highlight the latest insights on the structure and function of the peroxisomal docking complex. We summarize differences between yeast and mammals and then we integrate this knowledge into our current understanding of the import machinery.


Asunto(s)
Proteínas de la Membrana , Peroxisomas , Animales , Proteínas de la Membrana/metabolismo , Peroxisomas/química , Transporte de Proteínas , Proteínas Portadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
8.
J Mol Biol ; 434(14): 167669, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35671830

RESUMEN

The two major efflux pump systems that are involved in multidrug resistance (MDR) are (i) ATP binding cassette (ABC) transporters and (ii) secondary transporters. While the former use binding and hydrolysis of ATP to facilitate export of cytotoxic compounds, the latter utilize electrochemical gradients to expel their substrates. Pdr5 from Saccharomyces cerevisiae is a prominent member of eukaryotic ATP binding cassette (ABC) transporters that are involved in multidrug resistance (MDR) and used as a frequently studied model system. Although investigated for decades, the underlying molecular mechanisms of drug transport and substrate specificity remain elusive. Here, we provide electrophysiological data on the reconstituted Pdr5 demonstrating that this MDR efflux pump does not only actively translocate its substrates across the lipid bilayer, but at the same time generates a proton motif force in the presence of Mg2+-ATP and substrates by acting as a proton/drug co-transporter. Importantly, a strictly substrate dependent co-transport of protons was also observed in in vitro transport studies using Pdr5-enriched plasma membranes. We conclude from these results that the mechanism of MDR conferred by Pdr5 and likely other transporters is more complex than the sole extrusion of cytotoxic compounds and involves secondary coupled processes suitable to increase the effectiveness.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Resistencia a Múltiples Medicamentos , Proteínas de Saccharomyces cerevisiae , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Membrana Celular/metabolismo , Transporte Iónico , Membrana Dobles de Lípidos/metabolismo , Protones , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Structure ; 30(4): 532-534, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35395193

RESUMEN

Proteins, the building blocks of life, often form large assemblies to perform their function but are traditionally studied separately in structural biology. In this issue of Structure, Skalidis et al. (2022) present a workflow to identify members of intact protein communities and solve their structures de novo to near-atomic resolution.


Asunto(s)
Inteligencia Artificial , Proteínas , Extractos Celulares , Microscopía por Crioelectrón , Proteínas/química
10.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35105815

RESUMEN

Activation of the GTPase Rab7/Ypt7 by its cognate guanine nucleotide exchange factor (GEF) Mon1-Ccz1 marks organelles such as endosomes and autophagosomes for fusion with lysosomes/vacuoles and degradation of their content. Here, we present a high-resolution cryogenic electron microscopy structure of the Mon1-Ccz1 complex that reveals its architecture in atomic detail. Mon1 and Ccz1 are arranged side by side in a pseudo-twofold symmetrical heterodimer. The three Longin domains of each Mon1 and Ccz1 are triangularly arranged, providing a strong scaffold for the catalytic center of the GEF. At the opposite side of the Ypt7-binding site, a positively charged and relatively flat patch stretches the Longin domains 2/3 of Mon1 and functions as a phosphatidylinositol phosphate-binding site, explaining how the GEF is targeted to membranes. Our work provides molecular insight into the mechanisms of endosomal Rab activation and serves as a blueprint for understanding the function of members of the Tri Longin domain Rab-GEF family.


Asunto(s)
Membrana Celular/metabolismo , Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Unión a GTP rab7/metabolismo , Membrana Celular/genética , Chaetomium/genética , Proteínas Fúngicas/genética , Complejos Multiproteicos/genética , Proteínas de Unión a GTP rab7/genética
11.
PLoS Pathog ; 18(1): e1010182, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986192

RESUMEN

The type VI secretion system (T6SS) is a widespread protein export apparatus found in Gram-negative bacteria. The majority of T6SSs deliver toxic effector proteins into competitor bacteria. Yet, the structure, function, and activation of many of these effectors remains poorly understood. Here, we present the structures of the T6SS effector RhsA from Pseudomonas protegens and its cognate T6SS spike protein, VgrG1, at 3.3 Å resolution. The structures reveal that the rearrangement hotspot (Rhs) repeats of RhsA assemble into a closed anticlockwise ß-barrel spiral similar to that found in bacterial insecticidal Tc toxins and in metazoan teneurin proteins. We find that the C-terminal toxin domain of RhsA is autoproteolytically cleaved but remains inside the Rhs 'cocoon' where, with the exception of three ordered structural elements, most of the toxin is disordered. The N-terminal 'plug' domain is unique to T6SS Rhs proteins and resembles a champagne cork that seals the Rhs cocoon at one end while also mediating interactions with VgrG1. Interestingly, this domain is also autoproteolytically cleaved inside the cocoon but remains associated with it. We propose that mechanical force is required to remove the cleaved part of the plug, resulting in the release of the toxin domain as it is delivered into a susceptible bacterial cell by the T6SS.


Asunto(s)
Proteínas Bacterianas , Pseudomonas , Sistemas de Secreción Tipo VI
12.
Chemistry ; 28(5): e202103406, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34825743

RESUMEN

Metallo-supramolecular self-assembly has yielded a plethora of discrete nanosystems, many of which show competence in capturing guests and catalyzing chemical reactions. However, the potential of low-molecular bottom-up self-assemblies in the development of structured inorganic materials has rarely been methodically explored so far. Herein, we present a new type of metallo-supramolecular surfactant with the ability to stabilize non-aqueous emulsions for a significant period. The molecular design of the surfactant is based on a heteroleptic coordination cage (CGA-3; CGA=Cage-based Gemini Amphiphile), assembled from two pairs of organic building blocks, grouped around two Pd(II) cations. Shape-complementarity between the differently functionalized components generates discrete amphiphiles with a tailor-made polarity profile, able to stabilize non-aqueous emulsions, such as hexadecane-in-DMSO. These emulsions were used as a medium for the synthesis of spherical metal oxide microcapsules (titanium oxide, zirconium oxide, and niobium oxide) from soluble, water-sensitive alkoxide precursors by allowing a controlled dosage of water to the liquid-liquid phase boundary. Synthesized materials were analyzed by a combination of electron microscopic techniques. In situ liquid cell transmission electron microscopy (LC-TEM) was utilized for the first time to visualize the dynamics of the emulsion-templated formation of hollow inorganic titanium oxide and zirconium oxide microspheres.


Asunto(s)
Óxidos , Tensoactivos , Cápsulas , Emulsiones , Microscopía Electrónica de Transmisión
14.
Nat Commun ; 12(1): 6956, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845192

RESUMEN

Latrotoxins (LaTXs) are presynaptic pore-forming neurotoxins found in the venom of Latrodectus spiders. The venom contains a toxic cocktail of seven LaTXs, with one of them targeting vertebrates (α-latrotoxin (α-LTX)), five specialized on insects (α, ß, γ, δ, ε- latroinsectotoxins (LITs), and one on crustaceans (α-latrocrustatoxin (α-LCT)). LaTXs bind to specific receptors on the surface of neuronal cells, inducing the release of neurotransmitters either by directly stimulating exocytosis or by forming Ca2+-conductive tetrameric pores in the membrane. Despite extensive studies in the past decades, a high-resolution structure of a LaTX is not yet available and the precise mechanism of LaTX action remains unclear. Here, we report cryoEM structures of the α-LCT monomer and the δ-LIT dimer. The structures reveal that LaTXs are organized in four domains. A C-terminal domain of ankyrin-like repeats shields a central membrane insertion domain of six parallel α-helices. Both domains are flexibly linked via an N-terminal α-helical domain and a small ß-sheet domain. A comparison between the structures suggests that oligomerization involves major conformational changes in LaTXs with longer C-terminal domains. Based on our data we propose a cyclic mechanism of oligomerization, taking place prior membrane insertion. Both recombinant α-LCT and δ-LIT form channels in artificial membrane bilayers, that are stabilized by Ca2+ ions and allow calcium flux at negative membrane potentials. Our comparative analysis between α-LCT and δ-LIT provides first crucial insights towards understanding the molecular mechanism of the LaTX family.


Asunto(s)
Araña Viuda Negra/química , Calcio/química , Neurotoxinas/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Venenos de Araña/química , Animales , Sitios de Unión , Araña Viuda Negra/patogenicidad , Calcio/metabolismo , Clonación Molecular , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Transporte Iónico , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Potenciales de la Membrana/fisiología , Modelos Moleculares , Neurotoxinas/genética , Neurotoxinas/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Venenos de Araña/genética , Venenos de Araña/metabolismo
15.
Adv Sci (Weinh) ; 8(18): e2100694, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34278745

RESUMEN

The transport of membrane impermeable compounds into cells is a prerequisite for the efficient cellular delivery of hydrophilic and amphiphilic compounds and drugs. Transport into the cell's cytosolic compartment should ideally be controllable and it should involve biologically compatible and degradable vehicles. Addressing these challenges, nanocontainers based on cyclodextrin amphiphiles that are stabilized by a biodegradable peptide shell are developed and their potential to deliver fluorescently labeled cargo into human cells is analyzed. Host-guest mediated self-assembly of a thiol-containing short peptide or a cystamine-cross-linked polypeptide shell on cyclodextrin vesicles produce short peptide-shelled (SPSVss ) or polypeptide-shelled vesicles (PPSVss ), respectively, with redox-responsive and biodegradable features. Whereas SPSVss are permeable and less stable, PPSVss effectively encapsulate cargo and show a strictly regulated release of membrane impermeable cargo triggered by either reducing conditions or peptidase treatment. Live cell experiments reveal that the novel PPSVSS are readily internalized by primary human endothelial cells (human umbilical vein endothelial cells) and cervical cancer cells and that the reductive microenvironment of the cells' endosomes trigger release of the hydrophilic cargo into the cytosol. Thus, PPSVSS represent a highly efficient, biodegradable, and tunable system for overcoming the plasma membrane as a natural barrier for membrane-impermeable cargo.


Asunto(s)
Ciclodextrinas/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Células Endoteliales/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/metabolismo , Humanos , Nanopartículas/metabolismo
16.
EMBO J ; 40(18): e108004, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34313341

RESUMEN

Kinetochores form the link between chromosomes and microtubules of the mitotic spindle. The heterodecameric Dam1 complex (Dam1c) is a major component of the Saccharomyces cerevisiae outer kinetochore, assembling into 3 MDa-sized microtubule-embracing rings, but how ring assembly is specifically initiated in vivo remains to be understood. Here, we describe a molecular pathway that provides local control of ring assembly during the establishment of sister kinetochore bi-orientation. We show that Dam1c and the general microtubule plus end-associated protein (+TIP) Bim1/EB1 form a stable complex depending on a conserved motif in the Duo1 subunit of Dam1c. EM analyses reveal that Bim1 crosslinks protrusion domains of adjacent Dam1c heterodecamers and promotes the formation of oligomers with defined curvature. Disruption of the Dam1c-Bim1 interaction impairs kinetochore localization of Dam1c in metaphase and delays mitosis. Phosphorylation promotes Dam1c-Bim1 binding by relieving an intramolecular inhibition of the Dam1 C-terminus. In addition, Bim1 recruits Bik1/CLIP-170 to Dam1c and induces formation of full rings even in the absence of microtubules. Our data help to explain how new kinetochore end-on attachments are formed during the process of attachment error correction.


Asunto(s)
Cinetocoros/metabolismo , Proteínas de Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Saccharomycetales/fisiología , Segregación Cromosómica , Mitosis/fisiología , Complejos Multiproteicos/metabolismo , Fosforilación , Unión Proteica , Huso Acromático/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(52): 33216-33224, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33323485

RESUMEN

Import of yeast peroxisomal matrix proteins is initiated by cytosolic receptors, which specifically recognize and bind the respective cargo proteins. At the peroxisomal membrane, the cargo-loaded receptor interacts with the docking protein Pex14p that is tightly associated with Pex17p. Previous data suggest that this interaction triggers the formation of an import pore for further translocation of the cargo. The mechanistic principles, however, are unclear, mainly because structures of higher-order assemblies are still lacking. Here, using an integrative approach, we provide the structural characterization of the major components of the peroxisomal docking complex Pex14p/Pex17p, in a native bilayer environment, and reveal its subunit organization. Our data show that three copies of Pex14p and a single copy of Pex17p assemble to form a 20-nm rod-like particle. The different subunits are arranged in a parallel manner, showing interactions along their complete sequences and providing receptor binding sites on both membrane sides. The long rod facing the cytosol is mainly formed by the predicted coiled-coil domains of Pex14p and Pex17p, possibly providing the necessary structural support for the formation of the import pore. Further implications of Pex14p/Pex17p for formation of the peroxisomal translocon are discussed.

18.
Nat Commun ; 11(1): 5716, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177513

RESUMEN

Single particle cryo-EM requires full automation to allow high-throughput structure determination. Although software packages exist where parts of the cryo-EM pipeline are automated, a complete solution that offers reliable on-the-fly processing, resulting in high-resolution structures, does not exist. Here we present TranSPHIRE: A software package for fully-automated processing of cryo-EM datasets during data acquisition. TranSPHIRE transfers data from the microscope, automatically applies the common pre-processing steps, picks particles, performs 2D clustering, and 3D refinement parallel to image recording. Importantly, TranSPHIRE introduces a machine learning-based feedback loop to re-train its picking model to adapt to any given data set live during processing. This elegant approach enables TranSPHIRE to process data more effectively, producing high-quality particle stacks. TranSPHIRE collects and displays all metrics and microscope settings to allow users to quickly evaluate data during acquisition. TranSPHIRE can run on a single work station and also includes the automated processing of filaments.

19.
PLoS Pathog ; 16(8): e1008530, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32810181

RESUMEN

Anthrax toxin is the major virulence factor secreted by Bacillus anthracis, causing high mortality in humans and other mammals. It consists of a membrane translocase, known as protective antigen (PA), that catalyzes the unfolding of its cytotoxic substrates lethal factor (LF) and edema factor (EF), followed by translocation into the host cell. Substrate recruitment to the heptameric PA pre-pore and subsequent translocation, however, are not well understood. Here, we report three high-resolution cryo-EM structures of the fully-loaded anthrax lethal toxin in its heptameric pre-pore state, which differ in the position and conformation of LFs. The structures reveal that three LFs interact with the heptameric PA and upon binding change their conformation to form a continuous chain of head-to-tail interactions. As a result of the underlying symmetry mismatch, one LF binding site in PA remains unoccupied. Whereas one LF directly interacts with a part of PA called α-clamp, the others do not interact with this region, indicating an intermediate state between toxin assembly and translocation. Interestingly, the interaction of the N-terminal domain with the α-clamp correlates with a higher flexibility in the C-terminal domain of the protein. Based on our data, we propose a model for toxin assembly, in which the relative position of the N-terminal α-helices in the three LFs determines which factor is translocated first.


Asunto(s)
Carbunco/microbiología , Antígenos Bacterianos/química , Bacillus anthracis/fisiología , Toxinas Bacterianas/química , Microscopía por Crioelectrón/métodos , Animales , Humanos , Modelos Moleculares , Conformación Proteica
20.
Elife ; 92020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31951201

RESUMEN

The BBSome is a heterooctameric protein complex that plays a central role in primary cilia homeostasis. Its malfunction causes the severe ciliopathy Bardet-Biedl syndrome (BBS). The complex acts as a cargo adapter that recognizes signaling proteins such as GPCRs and links them to the intraflagellar transport machinery. The underlying mechanism is poorly understood. Here we present a high-resolution cryo-EM structure of a human heterohexameric core subcomplex of the BBSome. The structure reveals the architecture of the complex in atomic detail. It explains how the subunits interact with each other and how disease-causing mutations hamper this interaction. The complex adopts a conformation that is open for binding to membrane-associated GTPase Arl6 and a large positively charged patch likely strengthens the interaction with the membrane. A prominent negatively charged cleft at the center of the complex is likely involved in binding of positively charged signaling sequences of cargo proteins.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Síndrome de Bardet-Biedl/metabolismo , Factores de Ribosilacion-ADP/química , Cilios/metabolismo , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA