Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; 22(39): 13999-14005, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27515897

RESUMEN

The catalytic asymmetric synthesis of chiral 2-hydroxy ketones by using different thiamine diphosphate dependent enzymes, namely benzaldehyde lyase from Pseudomonas fluorescens (PfBAL), a variant of benzoylformate decarboxylase from Pseudomonas putida (PpBFD-L461A), branched-chain 2-keto acid decarboxylase from Lactococcus lactis (LlKdcA) and a variant of pyruvate decarboxylase from Acetobacter pasteurianus (ApPDC-E469G), was studied. Starting with the same set of substrates, substituted benzaldehydes in combination with different aliphatic aldehydes, PfBAL and PpBFD-L461A selectively deliver the (R)- and (S)-2-hydroxy-propiophenone derivatives, respectively. The (R)- and (S)-phenylacetylcarbinol (1-hydroxy-1-phenylacetone) derivatives are accessible in a similar way using LlKdcA and ApPDC-E469G, respectively. In many cases excellent stereochemical purities (>98 % enantiomeric excess) could be achieved. Hence, the regio- and stereochemistry of the product in the asymmetric aliphatic-aromatic cross-benzoin reaction can be controlled solely by choice of the appropriate enzyme or enzyme variant.


Asunto(s)
Acetobacter/enzimología , Acetona/análogos & derivados , Técnicas de Química Sintética/métodos , Hidroxipropiofenona/síntesis química , Lactococcus lactis/enzimología , Pseudomonas fluorescens/enzimología , Pseudomonas putida/enzimología , Acetona/síntesis química , Acetona/química , Aldehído-Liasas/química , Aldehídos/química , Benzoína/química , Biocatálisis , Carboxiliasas/química , Hidroxipropiofenona/química , Estereoisomerismo , Tiamina Pirofosfato/química
2.
Chembiochem ; 9(3): 406-12, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18224647

RESUMEN

Benzoylformate decarboxylase (BFD) from Pseudomonas putida is an exceptional thiamin diphosphate-dependent enzyme, as it catalyzes the formation of (S)-2-hydroxy-1-phenylpropan-1-one from benzaldehyde and acetaldehyde. This is the only currently known S-selective reaction (92 % ee) catalyzed by this otherwise R-selective class of enzymes. Here we describe the molecular basis of the introduction of S selectivity into ThDP-dependent decarboxylases. By shaping the active site of BFD through the use of rational protein design, structural analysis, and molecular modeling, optimal steric stabilization of the acceptor aldehyde in a structural element called the S pocket was identified as the predominant interaction for adjusting stereoselectivity. Our studies revealed Leu461 as a hot spot for stereoselectivity in BFD. Exchange to alanine and glycine resulted in variants that catalyze the S-stereoselective addition of larger acceptor aldehydes, such as propanal with benzaldehyde and its derivatives-a reaction not catalyzed by the wild-type enzyme. Crystal structure analysis of the variant BFDL461A supports the modeling studies.


Asunto(s)
Diseño de Fármacos , Enzimas/química , Tiamina Pirofosfato/química , Ingeniería de Proteínas , Estereoisomerismo
3.
J Am Chem Soc ; 129(47): 14697-709, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-17960903

RESUMEN

Copper-dioxygen (CuO2) adducts are frequently proposed as intermediates in enzymes, yet their electronic and vibrational structures have not always been understood. [Cu(eta1-O2)TMG3tren]+ (TMG3tren = 1,1,1-tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine) features end-on (eta1) O2 coordination in the solid state. Described here is an investigation of the compound's solution properties by nuclear magnetic resonance spectroscopy, density functional calculations, and oxygen isotope effects. The study yields two major findings. First, [Cu(eta1-O2)TMG3tren]+ is paramagnetic due to a triplet electronic structure; this is in contrast to other copper compounds where O2 is bound in a side-on manner. Second, the oxygen equilibrium isotope effect upon O2 binding to copper(I) (18O EIE [triple bond] K(16O16O)/K(16O18O) = 1.0148 +/- 0.0012) is significantly larger than those determined for iron and cobalt eta1-O2 adducts. This result is suggested to reflect greater ionic (CuII-O2-I) character within the valence bond description. A revised interpretation of the physical origins of the 18O EIEs upon O2 binding to redox metals is also advanced along with experimental data that should be used as benchmarks for interpreting 18O kinetic isotope effects upon enzyme reactions.


Asunto(s)
Cobre/química , Oxígeno/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Isótopos de Oxígeno/química , Temperatura
4.
J Am Chem Soc ; 127(45): 15738-43, 2005 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-16277515

RESUMEN

It is shown that a combination of Schwesinger's phosphazene base concept and the idea of the disubstituted 1,8-naphthalene spacer, first introduced by Alder in paradigmatic 1,8-bis(dimethylamino)naphthalene (DMAN), yields a new superbase, HMPN, which represents the up to date most basic representative of this class of "proton sponges", as evidenced by the theoretically estimated proton affinity PA = 274 kcal/mol and the measured pK(BH+) (MeCN) 29.9 +/- 0.2. HMPN is by nearly 12 orders of magnitude more basic than Alder's classical 1,8-bis(dimethylamino)naphthalene (DMAN). The title compound, HMPN, is prepared and fully characterized. The spatial structure of HMPN and its conjugate acid is determined by X-ray technique and theoretical DFT calculations. It is found that monoprotonated HMPN has an unsymmetrical intramolecular hydrogen bridge (IHB). This cooperative proton chelating effect renders the bisphosphazene more basic than Schwesinger's set of "monodentate" P1 phosphazene bases. The density functional calculations are in good accordance with the experimental results, providing some complementary information. They conclusively show that the high basicity of HMPN is a consequence of the high energy content of the base in its initial neutral state and the intramolecular hydrogen bonding in the resulting conjugate acid with contributions to proton affinity of 14.1 and 9.5 kcal/mol, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...