Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 354: 124134, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734050

RESUMEN

This review article explores the challenges associated with landfill leachate resulting from the increasing disposal of municipal solid waste in landfills and open areas. The composition of landfill leachate includes antibiotics (0.001-100 µg), heavy metals (0.001-1.4 g/L), dissolved organic and inorganic components, and xenobiotics including polyaromatic hydrocarbons (10-25 µg/L). Conventional treatment methods, such as biological (microbial and phytoremediation) and physicochemical (electrochemical and membrane-based) techniques, are available but face limitations in terms of cost, accuracy, and environmental risks. To surmount these challenges, this study advocates for the integration of artificial intelligence (AI) and machine learning (ML) to strengthen treatment efficacy through predictive analytics and optimized operational parameters. It critically evaluates the risks posed by recalcitrant leachate components and appraises the performance of various treatment modalities, both independently and in tandem with biological and physicochemical processes. Notably, physicochemical treatments have demonstrated pollutant removal rates of up to 90% for various contaminants, while integrated biological approaches have achieved over 95% removal efficiency. However, the heterogeneous nature of solid waste composition further complicates treatment methodologies. Consequently, the integration of advanced ML algorithms such as Support Vector Regression, Artificial Neural Networks, and Genetic Algorithms is proposed to refine leachate treatment processes. This review provides valuable insights for different stakeholders specifically researchers, policymakers and practitioners, seeking to fortify waste disposal infrastructure and foster sustainable landfill leachate management practices. By leveraging AI and ML tools in conjunction with a nuanced understanding of leachate complexities, a promising pathway emerges towards effectively addressing this environmental challenge while mitigating potential adverse impacts.

2.
J Environ Manage ; 355: 120508, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457896

RESUMEN

Crude oil contamination has inflicted severe damage to soil ecosystems, necessitating effective remediation strategies. This study aimed to compare the efficacy of four different techniques (biostimulation, bioaugmentation, bioaugmentation + biostimulation, and natural attenuation) for remediating agricultural soil contaminated with crude oil using soil microcosms. A consortium of previously characterized bacteria Xanthomonas boreopolis, Microbacterium schleiferi, Pseudomonas aeruginosa, and Bacillus velezensis was constructed for bioaugmentation. The microbial count for the constructed consortium was recorded as 2.04 ± 0.11 × 108 CFU/g on 60 d in augmented and stimulated soil samples revealing their potential to thrive in chemically contaminated-stress conditions. The microbial consortium through bioaugmentation + biostimulation approach resulted in 79 ± 0.92% degradation of the total polyaromatic hydrocarbons (2 and 3 rings âˆ¼ 74%, 4 and 5 rings âˆ¼ 83% loss) whereas, 91 ± 0.56% degradation of total aliphatic hydrocarbons (C8-C16 ∼ 90%, C18-C28 ∼ 92%, C30 to C40 ∼ 88% loss) was observed in 60 d. Further, after 60 d of microcosm treatment, the treated soil samples were used for phytotoxicity assessment using wheat (Triticum aestivum), black chickpea (Cicer arietinum), and mustard (Brassica juncea). The germination rates for wheat (90%), black chickpea (100%), and mustard (100%) were observed in 7 d with improved shoot-root length and biomass in both bioaugmentation and biostimulation approaches. This study projects a comprehensive approach integrating bacterial consortium and nutrient augmentation strategies and underscores the vital role of innovative environmental management practices in fostering sustainable remediation of oil-contaminated soil ecosystems. The formulated bacterial consortium with a nutrient augmentation strategy can be utilized to restore agricultural lands towards reduced phytotoxicity and improved plant growth.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Suelo/química , Ecosistema , Contaminantes del Suelo/análisis , Hidrocarburos/metabolismo , Microbiología del Suelo
3.
Bioresour Technol ; 397: 130469, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382722

RESUMEN

This study focuses on the development of a scalable method for producing poly(3-hydroxypropionate), a homopolymer with significant physico-mechanical properties, through the use of metabolically-engineered Escherichia coli K12 (MG1655) and externally supplied 3-hydroxypropionate. The polymer synthesis pathway was established and optimized through synthetic biology techniques, including the effects of overexpressing phasin and cell division proteins. The optimized strain achieved unprecedented production titers of 9.5 g/L in flask cultures and 80 g/L in fed-batch bioreactors within 45 h. The analysis of poly(3-hydroxypropionate) polymer properties revealed it possesses excellent elasticity (Young's modulus < 6 MPa) and tensile strength (∼80 MPa), positioning it within the category of elastomers or flexible plastics. These findings suggest a viable path for the sustainable, large-scale production of the poly(3-hydroxypropionate) biopolymer.


Asunto(s)
Escherichia coli , Ácido Láctico/análogos & derivados , Ingeniería Metabólica , Escherichia coli/metabolismo , Poliésteres/metabolismo
4.
Bioresour Technol ; 389: 129814, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783239

RESUMEN

1,3-Butanediol (1,3-BDO) finds versatile applications in the cosmetic, chemical, and food industries. This study focuses on the metabolic engineering of Escherichia coli K12 to achieve efficient production of 1,3-BDO from glucose via acetoacetyl-CoA, 3-hydroxybutyryl-CoA, and 3-hydroxybutyraldehyde. The accumulation of an intermediary metabolite (pyruvate) and a byproduct (3-hydroxybutyric acid) was reduced by disruption of the negative transcription factor (PdhR) for pyruvate dehydrogenase complex (PDHc) and employing an efficient alcohol dehydrogenase (YjgB), respectively. Additionally, to improve NADPH availability, carbon flux was redirected from the Embden-Meyerhof-Parnas (EMP) pathway to the Entner-Doudoroff (ED) pathway. One resulting strain achieved a record-high titer of 790 mM (∼71.1 g/L) with a yield of 0.65 mol/mol for optically pure (R)-1,3-BDO, with an enantiomeric excess (e.e.) value of 98.5 %. These findings are useful in the commercial production of 1,3-BDO and provide valuable insights into the development of an efficient cell factory for other acetyl-CoA derivatives.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica , Glucosa/metabolismo , Glucólisis , Butileno Glicoles/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas de Escherichia coli/genética
5.
Environ Res ; 225: 115592, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863654

RESUMEN

"Save Soil Save Earth" is not just a catchphrase; it is a necessity to protect soil ecosystem from the unwanted and unregulated level of xenobiotic contamination. Numerous challenges such as type, lifespan, nature of pollutants and high cost of treatment has been associated with the treatment or remediation of contaminated soil, whether it be either on-site or off-site. Due to the food chain, the health of non-target soil species as well as human health were impacted by soil contaminants, both organic and inorganic. In this review, the use of microbial omics approaches and artificial intelligence or machine learning has been comprehensively explored with recent advancements in order to identify the sources, characterize, quantify, and mitigate soil pollutants from the environment for increased sustainability. This will generate novel insights into methods for soil remediation that will reduce the time and expense of soil treatment.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Ecosistema , Inteligencia Artificial , Contaminación Ambiental/prevención & control , Metales Pesados/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Suelo
6.
J Food Sci Technol ; 60(3): 975-986, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908343

RESUMEN

In this study, a five-factorial central composite design was employed to optimize pectin extraction from novel source, through ultrasound-assisted extraction. A 35.58% yield was obtained under optimized conditions of pH 1.0, solid (g): liquid (mL) ratio 1:24, amplitude 84.2 Hz, duty cycle 23 s/30 s, and time 30 min. The equivalent weight, methoxyl content, anhydrouronic acid content, degree of esterification, water-holding capacity, and oil-holding capacity of the extracted pectin were 796.40 ± 2.07, 8.29 ± 0.38%, 71.32 ± 0.54%, 64.66 ± 2.08%, 8.04 ± 0.10 g water/g pectin, and 2.24 ± 030 g oil/g pectin, respectively. The chemical profile of the extracted pectin was assessed with FTIR and NMR analyses. The extracted pectin was utilized as a butter substitute in cookies. Up to 30% butter in cookies could be replaced with the extracted pectin without altering the sensory and physicochemical properties. Overall, results of presented work suggest that using waste-derived pectin as a fat substitute in cookies offers a sustainable and health-promoting approach for converting waste into wealth.

7.
Bioresour Technol ; 376: 128911, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36934906

RESUMEN

The production of 1,3-butanediol (1,3-BDO) from glucose was investigated using Escherichia coli as the host organism. A pathway was engineered by overexpressing genes phaA (acetyl-CoA acetyltransferase), phaB (acetoacetyl-CoA reductase), bld (CoA-acylating aldehyde dehydrogenase), and yqhD (alcohol dehydrogenase). The expression levels of these genes were optimized to improve 1,3-BDO production and pathways that compete with 1,3-BDO synthesis were disrupted. Culture conditions were also optimized, including the C: N ratio, aeration, induction time, temperature, and supplementation of amino acids, resulting in a strain that could produce 1,3-BDO at 257 mM in 36 h, with a yield of 0.51 mol/mol in a fed-batch bioreactor experiment. To the best of our knowledge, this is the highest titer of 1,3-BDO production ever reported using biological methods, and our findings provide a promising strategy for the development of microbial cell factories for the sustainable synthesis of other acetyl-CoA-derived chemicals.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Alcohol Deshidrogenasa/metabolismo , Reactores Biológicos , Butileno Glicoles/metabolismo
8.
Bioresour Technol ; 373: 128750, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36796731

RESUMEN

Free cyanide is a hazardous pollutant released from steel industries. Environmentally-safe remediation of cyanide-contaminated wastewater is required. In this work, Pseudomonas stutzeri (ASNBRI_B12), Trichoderma longibrachiatum (ASNBRI_F9), Trichoderma saturnisporum (ASNBRI_F10) and Trichoderma citrinoviride (ASNBRI_F14) were isolated from blast-furnace wastewater and activated-sludge by enrichment culture. Elevated microbial growth, rhodanese activity (82 %) and GSSG (128 %) were observed with 20 mg-CN L-1. Cyanide degradation > 99 % on 3rd d as evaluated through ion chromatography, followed by first-order kinetics (r2 = 0.94-0.99). Cyanide degradation in wastewater (20 mg-CN L-1, pH 6.5) was studied in ASNBRI_F10 and ASNBRI_F14 which displayed increased biomass to 49.7 % and 21.6 % respectively. Maximum cyanide degradation of 99.9 % in 48 h was shown by an immobilized consortium of ASNBRI_F10 and ASNBRI_F14. FTIR analysis revealed that cyanide treatment alters functional groups on microbial cell walls. The novel consortium of T. saturnisporum-T. citrinoviride in the form of immobilized culture can be employed to treat cyanide-contaminated wastewater.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Cianuros/metabolismo , Aguas Residuales , Aguas del Alcantarillado , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental
9.
Environ Sci Pollut Res Int ; 30(18): 51770-51781, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36820967

RESUMEN

Indole is a nitrogenous heterocyclic aromatic pollutant often detected in various environments. An efficient indole degrading bacterium strain IITR89 was isolated from River Cauvery, India, and identified as Alcaligenes faecalis subsp. phenolicus. The bacterium was found to degrade ~ 95% of 2.5 mM (293.75 mg/L) of indole within 18 h utilizing it as a sole carbon and energy source. Based on metabolite identification, the metabolic route of indole degradation is indole → (indoxyl) → isatin → (anthranilate) → salicylic acid → (catechol) → (Acetyl-CoA) → and further entering into TCA cycle. Genome sequencing of IITR89 revealed the presence of gene cluster dmpKLMNOP, encoding multicomponent phenol hydroxylase; andAbcd gene cluster, encoding anthranilate 1,2-dioxygenase ferredoxin subunit (andAb), anthranilate 1,2-dioxygenase large subunit (andAc), and anthranilate 1,2-dioxygenase small subunit (andAd); nahG, salicylate hydroxylase; catA, catechol 1,2-dioxygenase; catB, cis, cis-muconate cycloisomerase; and catC, muconolactone D-isomerase which play an active role in indole degradation. The findings strongly support the degradation potential of strain IITR89 and its possible application for indole biodegradation.


Asunto(s)
Alcaligenes faecalis , Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Proteínas Bacterianas/genética , Biodegradación Ambiental , Genómica , Indoles/metabolismo
10.
J Hazard Mater ; 441: 129906, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36088882

RESUMEN

For decades, reclamation of pesticide contaminated sites has been a challenging avenue. Due to increasing agricultural demand, the application of synthetic pesticides could not be controlled in its usage, and it has now adversely impacted the soil, water, and associated ecosystems posing adverse effects on human health. Agricultural soil and pesticide manufacturing sites, in particular, are one of the most contaminated due to direct exposure. Among various strategies for soil reclamation, ecofriendly microbial bioremediation suffers inherent challenges for large scale field application as interaction of microbes with the polluted soil varies greatly under climatic conditions. Methodically, starting from functional or genomic screening, enrichment isolation; functional pathway mapping, production of tensioactive metabolites for increasing the bioavailability and bio-accessibility, employing genetic engineering strategies for modifications in existing catabolic genes to enhance the degradation activity; each step-in degradation study has challenges and prospects which can be addressed for successful application. The present review critically examines the methodical challenges addressing the feasibility for restoring and reclaiming pesticide contaminated sites along with the ecotoxicological risk assessments. Overall, it highlights the need to fine-tune the available processes and employ interdisciplinary approaches to make microbe assisted bioremediation as the method of choice for reclamation of pesticide contaminated sites.


Asunto(s)
Plaguicidas , Contaminantes del Suelo , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Ecosistema , Estudios de Factibilidad , Humanos , Plaguicidas/metabolismo , Suelo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Agua
11.
Chemosphere ; 311(Pt 1): 136877, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36257395

RESUMEN

The recent upsurge in the studies on micro/nano plastics and antimicrobial resistance genes has proven their deleterious effects on the environmental and human health. Till-date, there is a scarcity of studies on the interactions of these two factors and their combined influence. The interaction of microplastics has led to the formation of new plastics namely plastiglomerates, pyroplastics. and anthropoquinas. It has long been ignored that the occurrence of microplastics has become a breeding ground for the emergence of antimicrobial resistance genes. Evidently microplastics are also associated with the occurrence of other pollutants such as polyaromatic hydrocarbons and pesticides. The increased use of antibiotics (after Covid breakout) has further elevated the detrimental effects on human health. Therefore, this study highlights the relation of microplastics with antibiotic resistance generation. The factors such as uncontrolled use of antibiotics and negligent plastic consumption has been evaluated. Furthermore, the future research prospective was provided that can be helpful in correctly identifying the seriousness of the environmental occurrence of these pollutants.


Asunto(s)
COVID-19 , Contaminantes Ambientales , Contaminantes Químicos del Agua , Humanos , Microplásticos , Antibacterianos/farmacología , Plásticos , Estudios Prospectivos , Farmacorresistencia Bacteriana/genética , Contaminación Ambiental , Contaminantes Ambientales/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
13.
Sci Total Environ ; 832: 155083, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35395309

RESUMEN

The global rise in industrialization and vehicularization has led to the increasing trend in the use of different crude oil types. Among these mobil oil has major application in automobiles and different machines. The combustion of mobil oil renders a non-usable form that ultimately enters the environment thereby causing problems to environmental health. The aliphatic and aromatic hydrocarbon fraction of mobil oil has serious human and environmental health hazards. These components upon interaction with soil affect its fertility and microbial diversity. The recent advancement in the omics approach viz. metagenomics, metatranscriptomics and metaproteomics has led to increased efficiency for the use of microbial based remediation strategy. Additionally, the use of biosurfactants further aids in increasing the bioavailability and thus biodegradation of crude oil constituents. The combination of more than one approach could serve as an effective tool for efficient reduction of oil contamination from diverse ecosystems. To the best of our knowledge only a few publications on mobil oil have been published in the last decade. This systematic review could be extremely useful in designing a micro-bioremediation strategy for aquatic and terrestrial ecosystems contaminated with mobil oil or petroleum hydrocarbons that is both efficient and feasible. The state-of-art information and future research directions have been discussed to address the issue efficiently.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Ecosistema , Humanos , Hidrocarburos/metabolismo , Petróleo/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/análisis
14.
Int J Food Microbiol ; 368: 109610, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35278799

RESUMEN

Oligosaccharides are the sugars made up of 3-10 saccharides units and one of the classes of prebiotics obtained from various biowastes. These biowastes could include rice straw, husk, spent coffee grounds, sugarcane bagasse, spent tea leaves, fruits and vegetables peel, corn stalk, corn stover, deoiled meals and brewer's spent grains etc., which can be used as a resource for oligosaccharides production. This review aims to provide a comprehensive overview of the suitability of different biowaste resources for oligosaccharide production followed by critical analysis of the recent updates and production methods. The review also discusses the tremendous prebiotic potential of oligosaccharides in food applications with prospects for further advancements in the field.


Asunto(s)
Prebióticos , Saccharum , Celulosa , Oligosacáridos , Prebióticos/análisis , Tecnología
15.
Environ Res ; 209: 112793, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35090873

RESUMEN

Global rise in the generation of waste has caused an enormous environmental concern and waste management problem. The untreated carbon rich waste serves as a breeding ground for pathogens and thus strategies for production of carbon rich biochar from waste by employing different thermochemical routes namely hydrothermal carbonization, hydrothermal liquefaction and pyrolysis has been of interest by researchers globally. Biochar has been globally produced due to its diverse applications from environmental bioremediation to energy storage. Also, several factors affect the production of biochar including feedstock/biomass type, moisture content, heating rate, and temperature. Recently the application of biochar has increased tremendously owing to the cost effectiveness and eco-friendly nature. Thus this communication summarized and highlights the preferred feedstock for optimized biochar yield along with the factor influencing the production. This review provides a close view on biochar activation approaches and synthesis techniques. The application of biochar in environmental remediation, composting, as a catalyst, and in energy storage has been reviewed. These informative findings were supported with an overview of lifecycle and techno-economical assessments in the production of these carbon based catalysts. Integrated closed loop approaches towards biochar generation with lesser/zero landfill waste for safeguarding the environment has also been discussed. Lastly the research gaps were identified and the future perspectives have been elucidated.


Asunto(s)
Carbono , Restauración y Remediación Ambiental , Animales , Biodegradación Ambiental , Estadios del Ciclo de Vida , Pirólisis
16.
Environ Sci Pollut Res Int ; 29(41): 61821-61837, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34420173

RESUMEN

Increasing petroleum consumption and a rise in incidental oil spillages have become global concerns owing to their aquatic and terrestrial toxicity. Various physicochemical and biological treatment strategies have been studied to tackle them and their impact on environment. One of such approaches in this regard is the use of microbial processes due to their being "green" and also apparent low cost and high effectiveness. This review presents the advancement in the physical and biological remediation methods and their progressive efficacy if employed in combination of hybrid modes. The use of biosurfactants and/or biochar along with microbes seems to be a more effective bioremediation approach as compared to their individual effects. The lacuna in research at community or molecular level has been overcome by the recent introduction of "-omics" technology in hydrocarbon degradation. Thus, the review further focuses on presenting the state-of-art information on the advancement of petroleum bioremediation strategies and identifies the research gaps for achieving total mitigation of petroleum oil.


Asunto(s)
Contaminación por Petróleo , Petróleo , Biodegradación Ambiental , Hidrocarburos/metabolismo , Petróleo/metabolismo
17.
Sci Total Environ ; 811: 152357, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34921885

RESUMEN

Majority of industries, in order to meet the technological development and consumer demands generate waste. The untreated waste spreads out toxic and harmful substances in the environment which serves as a breeding ground for pathogenic microorganisms thus causing severe health hazards. The three industrial sectors namely food, agriculture, and oil industry are among the primary organic waste producers that affect urban health and economic growth. Conventional treatment generates a significant amount of greenhouse gases which further contributes to global warming. Thus, the use of microbes for utilization of this waste, liberating CO2 offers an indispensable tool. The simultaneous production of value-added products such as bioplastics, biofuels, and biosurfactants increases the economics of the process and contributes to environmental sustainability. This review comprehensively summarized the composition of organic waste generated from the food, agriculture, and oil industry. The linkages between global health hazards of industrial waste and environmental implications have been uncovered. Stare-of-the-art information on their subsequent utilization as a substrate to produce value-added products through bio-routes has been elaborated. The research gaps, economical perspective(s), and future research directions have been identified and discussed to strengthen environmental sustainability.


Asunto(s)
Gases de Efecto Invernadero , Residuos Industriales , Agricultura , Biocombustibles , Salud Global , Residuos Industriales/análisis
18.
Bioengineered ; 12(1): 8247-8258, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34814795

RESUMEN

Animal derived waste, if not disposed properly, could pose a threat to the environment and its inhabitants. Recent advancements in biotechnological and biomedical interventions have enabled us to bioengineer these valuable waste substrates into biomaterials with diversified applications. Rearing and processing of poultry, cattle, sheep, goat, pig, and slaughterhouse waste can aid in effective waste valorization for the fabrication of biopolymers, composites, heart valves, collagen, scaffolds, pigments and lipids, among other industrially important biomaterials. Feathers and eggshell waste from the poultry industry can be used for producing keratinous proteins and biocomposites, respectively. Cattle dung, hoofs and cattle hide can be used for producing hydroxyapatite for developing scaffolds and drug delivery systems. Porcine derived collagen can be used for developing skin grafts, while porcine urinary bladder has antiangiogenic, neurotrophic, tumor-suppressive and wound healing properties. Sheep teeth can be used for the production of low-cost hydroxyapatite while goat tissue is still underutilized and requires more in-depth investigation. However, hydrolyzed tannery fleshings show promising potential for antioxidant rich animal feed production. In this review, the recent developments in the production and application of biomaterials from animal waste have been critically analyzed. Standardized protocols for biomaterial synthesis on a pilot scale, and government policy framework for establishing an animal waste supply chain for end users seem to be lacking and require urgent attention. Moreover, circular bioeconomy concepts for animal derived biomaterial production need to be developed for creating a sustainable system.


Asunto(s)
Mataderos , Materiales Biocompatibles , Biotecnología/métodos , Residuos Industriales , Agricultura , Animales , Ganado , Aves de Corral , Eliminación de Residuos
19.
Bioengineered ; 12(1): 7297-7313, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34569893

RESUMEN

Increase in anthropogenic activities due to rapid industrialization had caused an elevation in heavy metal contamination of aquatic and terrestrial ecosystems. These pollutants have detrimental effects on human and environmental health. The majority of these pollutants are carcinogenic, neurotoxic, and are very poisonous even at very low concentrations. Contamination caused by heavy metals has become a global concern for which the traditional treatment approaches lack in providing a cost-effective and eco-friendly solution. Therefore, the use of microorganisms and plants to reduce the free available heavy metal present in the environment has become the most acceptable method by researchers. Also, in microbial- and phyto-remediation the redox reaction shifts the valence which makes these metals less toxic. In addition to this, the use of biochar as a remediation tool has provided a sustainable solution that needs further investigations toward its implementation on a larger scale. Enzymes secreted by microbes and whole microbial cell are considered an eco-efficient biocatalyst for mitigation of heavy metals from contaminated sites. To the best of our knowledge there is very less literature available covering remediation of heavy metals aspect along with the sensors used for detection of heavy metals. Systematic management should be implemented to overcome the technical and practical limitations in the use of these bioremediation techniques. The knowledge gaps have been identified in terms of its limitation and possible future directions have been discussed.


Asunto(s)
Biodegradación Ambiental , Contaminantes Ambientales , Metales Pesados , Desarrollo Sostenible , Bacterias/metabolismo , Carbón Orgánico
20.
Microb Cell Fact ; 20(1): 163, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419059

RESUMEN

Microalgae has the capability to replace petroleum-based fuels and is a promising option as an energy feedstock because of its fast growth, high photosynthetic capacity and remarkable ability to store energy reserve molecules in the form of lipids and starch. But the commercialization of microalgae based product is difficult due to its high processing cost and low productivity. Higher accumulation of these molecules may help to cut the processing cost. There are several reports on the use of various omics techniques to improve the strains of microalgae for increasing the productivity of desired products. To effectively use these techniques, it is important that the glycobiology of microalgae is associated to omics approaches to essentially give rise to the field of algal glycobiotechnology. In the past few decades, lot of work has been done to improve the strain of various microalgae such as Chlorella, Chlamydomonas reinhardtii, Botryococcus braunii etc., through genome sequencing and metabolic engineering with major focus on significantly increasing the productivity of biofuels, biopolymers, pigments and other products. The advancements in algae glycobiotechnology have highly significant role to play in innovation and new developments for the production algae-derived products as above. It would be highly desirable to understand the basic biology of the products derived using -omics technology together with biochemistry and biotechnology. This review discusses the potential of different omic techniques (genomics, transcriptomics, proteomics, metabolomics) to improve the yield of desired products through algal strain manipulation.


Asunto(s)
Biotecnología/métodos , Genómica , Metabolómica , Microalgas/genética , Microalgas/metabolismo , Proteómica , Biocombustibles , Ingeniería Metabólica , Microalgas/clasificación , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA