Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Leukemia ; 38(3): 570-578, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38321107

RESUMEN

Myeloproliferative neoplasms (MPNs) are a group of chronic hematologic malignancies that lead to morbidity and early mortality due to thrombotic complications and progression to acute leukemia. Clinical and mutational risk factors have been demonstrated to predict outcomes in patients with MPNs and are used commonly to guide therapeutic decisions, including allogenic stem cell transplant, in myelofibrosis. Adolescents and young adults (AYA, age ≤45 years) comprise less than 10% of all MPN patients and have unique clinical and therapeutic considerations. The prevalence and clinical impact of somatic mutations implicated in myeloid disease has not been extensively examined in this population. We conducted a retrospective review of patients evaluated at eight Canadian centers for MPN patients diagnosed at ≤45 years of age. In total, 609 patients were included in the study, with median overall survival of 36.8 years. Diagnosis of prefibrotic or overt PMF is associated with the lowest OS and highest risk of AP/BP transformation. Thrombotic complications (24%), including splanchnic circulation thrombosis (9%), were frequent in the cohort. Mutations in addition to those in JAK2/MPL/CALR are uncommon in the initial disease phase in our AYA population (12%); but our data indicate they may be predictive of transformation to post-ET/PV myelofibrosis.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Mielofibrosis Primaria , Trombocitemia Esencial , Trombosis , Humanos , Adulto Joven , Adolescente , Persona de Mediana Edad , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/terapia , Policitemia Vera/genética , Trombocitemia Esencial/genética , Canadá/epidemiología , Trastornos Mieloproliferativos/complicaciones , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/terapia , Trombosis/genética , Janus Quinasa 2/genética , Mutación , Calreticulina/genética
2.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38260502

RESUMEN

Protein translation is an energy-intensive ribosome-driven process that is reduced during nutrient scarcity to conserve cellular resources. During prolonged starvation, cells selectively translate specific proteins to enhance their survival (adaptive translation); however, this process is poorly understood. Accordingly, we analyzed protein translation and mRNA transcription by multiple methods in vitro and in vivo to investigate adaptive hepatic translation during starvation. While acute starvation suppressed protein translation in general, proteomic analysis showed that prolonged starvation selectively induced translation of lysosome and autolysosome proteins. Significantly, the expression of the orphan nuclear receptor, estrogen-related receptor alpha (Esrra) increased during prolonged starvation and served as a master regulator of this adaptive translation by transcriptionally stimulating 60S acidic ribosomal protein P1 (Rplp1) gene expression. Overexpression or siRNA knockdown of Esrra expression in vitro or in vivo led to parallel changes in Rplp1 gene expression, lysosome/autophagy protein translation, and autophagy. Remarkably, we have found that Esrra had dual functions by not only regulating transcription but also controling adaptive translation via the Esrra/Rplp1/lysosome/autophagy pathway during prolonged starvation.

3.
Liver Int ; 44(1): 125-138, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37872645

RESUMEN

OBJECTIVE: Progressive hepatic fibrosis can be considered the final stage of chronic liver disease. Hepatic stellate cells (HSC) play a central role in liver fibrogenesis. Thyroid hormones (TH, e.g. thyroxine; T4 and triiodothyronine; T3) significantly affect development, growth, cell differentiation and metabolism through activation of TH receptor α and/or ß (TRα/ß). Here, we evaluated the influence of TH in hepatic fibrogenesis. DESIGN: Human liver tissue was obtained from explanted livers following transplantation. TRα-deficient (TRα-KO) and wild-type (WT) mice were fed a control or a profibrogenic methionine-choline deficient (MCD) diet. Liver tissue was assessed by qRT-PCR for fibrogenic gene expression. In vitro, HSC were treated with TGFß in the presence or absence of T3. HSC with stable TRα knockdown and TRα deficient mouse embryonic fibroblasts (MEF) were used to determine receptor-specific function. Activation of HSC and MEF was assessed using the wound healing assay, Western blotting, and qRT-PCR. RESULTS: TRα and TRß expression is downregulated in the liver during hepatic fibrogenesis in humans and mice. TRα represents the dominant isoform in HSC. In vitro, T3 blunted TGFß-induced expression of fibrogenic genes in HSC and abrogated wound healing by modulating TGFß signalling, which depended on TRα presence. In vivo, TRα-KO enhanced MCD diet-induced liver fibrogenesis. CONCLUSION: These observations indicate that TH action in non-parenchymal cells is highly relevant. The interaction of TRα with TH regulates the phenotype of HSC via the TGFß signalling pathway. Thus, the TH-TR axis may be a valuable target for future therapy of liver fibrosis.


Asunto(s)
Fibroblastos , Células Estrelladas Hepáticas , Animales , Ratones , Humanos , Células Estrelladas Hepáticas/metabolismo , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/farmacología , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Factor de Crecimiento Transformador beta
4.
Thyroid ; 34(2): 261-273, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38115594

RESUMEN

Background: Tanycytes are specialized glial cells within the mediobasal hypothalamus that have multiple functions, including hormone sensing and regulation of hypophysiotropic hormone secretion. There are ongoing discussions about the role of tanycytes in regulating the supply of hypothalamic thyroid hormones (THs) through the expression of TH transporters (Slc16a2, Slco1c1) and deiodinases (Dio2, Dio3). In this study, we investigated the potential feedback effect of thyrotropin (TSH) on the transcription of these gatekeeper genes on tanycytes. Methods: We analyzed the changes in the expression of TH-gatekeeper genes, in TSH-stimulated primary tanycytes, using quantitative polymerase chain reaction (qPCR). We also used RNAScope® in brain slices to further reveal the local distribution of the transcripts. In addition, we blocked intracellular pathways and used small-interfering RNA (siRNA) to elucidate differences in the regulation of the gatekeeper genes. Results: TSH elevated messenger RNA (mRNA) levels of Slco1c1, Dio2, and Dio3 in tanycytes, while Slc16a2 was mostly unaffected. Blockade and knockdown of the TSH receptor (TSHR) and antagonization of cAMP response element-binding protein (CREB) clearly abolished the increased expression induced by TSH, indicating PKA-dependent regulation through the TSHR. The TSH-dependent expression of Dio3 and Slco1c1 was also regulated by protein kinase C (PKC), and in case of Dio3, also by extracellular signal-regulated kinase (ERK) activity. Importantly, these gene regulations were specifically found in different subpopulations of tanycytes. Conclusions: This study demonstrates that TSH induces transcriptional regulation of TH-gatekeeper genes in tanycytes through the Tshr/Gαq/PKC pathway, in parallel to the Tshr/Gαs/PKA/CREB pathway. These differential actions of TSH on tanycytic subpopulations appear to be important for coordinating the supply of TH to the hypothalamus and aid its functions.


Asunto(s)
Células Ependimogliales , Tirotropina , Humanos , Tirotropina/farmacología , Tirotropina/metabolismo , Células Ependimogliales/metabolismo , Hormonas Tiroideas/metabolismo , Glándula Tiroides/metabolismo , Receptores de Tirotropina/genética , Receptores de Tirotropina/metabolismo , Hormonas Liberadoras de Hormona Hipofisaria/metabolismo , Proteína Quinasa C/metabolismo
5.
EMBO Rep ; 24(9): e57020, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37424431

RESUMEN

Cell identity is specified by a core transcriptional regulatory circuitry (CoRC), typically limited to a small set of interconnected cell-specific transcription factors (TFs). By mining global hepatic TF regulons, we reveal a more complex organization of the transcriptional regulatory network controlling hepatocyte identity. We show that tight functional interconnections controlling hepatocyte identity extend to non-cell-specific TFs beyond the CoRC, which we call hepatocyte identity (Hep-ID)CONNECT TFs. Besides controlling identity effector genes, Hep-IDCONNECT TFs also engage in reciprocal transcriptional regulation with TFs of the CoRC. In homeostatic basal conditions, this translates into Hep-IDCONNECT TFs being involved in fine tuning CoRC TF expression including their rhythmic expression patterns. Moreover, a role for Hep-IDCONNECT TFs in the control of hepatocyte identity is revealed in dedifferentiated hepatocytes where Hep-IDCONNECT TFs are able to reset CoRC TF expression. This is observed upon activation of NR1H3 or THRB in hepatocarcinoma or in hepatocytes subjected to inflammation-induced loss of identity. Our study establishes that hepatocyte identity is controlled by an extended array of TFs beyond the CoRC.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Factores de Transcripción/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Redes Reguladoras de Genes
6.
Cell Rep ; 42(7): 112661, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37347665

RESUMEN

Most marine organisms have a biphasic life cycle during which pelagic larvae transform into radically different juveniles. In vertebrates, the role of thyroid hormones (THs) in triggering this transition is well known, but how the morphological and physiological changes are integrated in a coherent way with the ecological transition remains poorly explored. To gain insight into this question, we performed an integrated analysis of metamorphosis of a marine teleost, the false clownfish (Amphiprion ocellaris). We show how THs coordinate a change in color vision as well as a major metabolic shift in energy production, highlighting how it orchestrates this transformation. By manipulating the activity of liver X regulator (LXR), a major regulator of metabolism, we also identify a tight link between metabolic changes and metamorphosis progression. Strikingly, we observed that these regulations are at play in the wild, explaining how hormones coordinate energy needs with available resources during the life cycle.


Asunto(s)
Metamorfosis Biológica , Hormonas Tiroideas , Animales , Hormonas Tiroideas/metabolismo , Metamorfosis Biológica/fisiología , Larva/metabolismo
8.
Endocrinology ; 164(4)2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36801988

RESUMEN

Thyroid hormone increases energy expenditure. Its action is mediated by TR, nuclear receptors present in peripheral tissues and in the central nervous system, particularly in hypothalamic neurons. Here, we address the importance of thyroid hormone signaling in neurons, in general for the regulation of energy expenditure. We generated mice devoid of functional TR in neurons using the Cre/LoxP system. In hypothalamus, which is the center for metabolic regulation, mutations were present in 20% to 42% of the neurons. Phenotyping was performed under physiological conditions that trigger adaptive thermogenesis: cold and high-fat diet (HFD) feeding. Mutant mice displayed impaired thermogenic potential in brown and inguinal white adipose tissues and were more prone to diet-induced obesity. They showed a decreased energy expenditure on chow diet and gained more weight on HFD. This higher sensitivity to obesity disappeared at thermoneutrality. Concomitantly, the AMPK pathway was activated in the ventromedial hypothalamus of the mutants as compared with the controls. In agreement, sympathetic nervous system (SNS) output, visualized by tyrosine hydroxylase expression, was lower in the brown adipose tissue of the mutants. In contrast, absence of TR signaling in the mutants did not affect their ability to respond to cold exposure. This study provides the first genetic evidence that thyroid hormone signaling exerts a significant influence in neurons to stimulate energy expenditure in some physiological context of adaptive thermogenesis. TR function in neurons to limit weight gain in response to HFD and this effect is associated with a potentiation of SNS output.


Asunto(s)
Obesidad , Hormonas Tiroideas , Masculino , Ratones , Animales , Obesidad/genética , Obesidad/metabolismo , Hormonas Tiroideas/metabolismo , Dieta Alta en Grasa/efectos adversos , Tejido Adiposo Pardo/metabolismo , Neuronas/metabolismo , Termogénesis/fisiología , Metabolismo Energético/genética
9.
Elife ; 112022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36374165

RESUMEN

Thyroid hormone (T3) and its nuclear receptors (TR) are important regulators of energy expenditure and adaptive thermogenesis, notably through their action in the brown adipose tissue (BAT). However, T3 acts in many other peripheral and central tissues which are also involved in energy expenditure. The general picture of how T3 regulates BAT thermogenesis is currently not fully established, notably due to the absence of extensive omics analyses and the lack of specific mice model. Here, we first used transcriptome and cistrome analyses to establish the list of T3/TR direct target genes in brown adipocytes. We then developed a novel model of transgenic mice, in which T3 signaling is specifically suppressed in brown adipocytes at adult stage. We addressed the capacity of these mice to mount a thermogenic response when challenged by either a cold exposure or a high-fat diet, and analyzed the associated changes in BAT transcriptome. We conclude that T3 plays a crucial role in the thermogenic response of the BAT, controlling the expression of genes involved in lipid and glucose metabolism and regulating BAT proliferation. The resulting picture provides an unprecedented view on the pathways by which T3 activates energy expenditure through an efficient adaptive thermogenesis in the BAT.


Asunto(s)
Adipocitos Marrones , Termogénesis , Ratones , Masculino , Animales , Adipocitos Marrones/metabolismo , Termogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Hormonas Tiroideas/metabolismo , Metabolismo Energético , Ratones Transgénicos , Ratones Endogámicos C57BL
10.
Chemosphere ; 287(Pt 3): 132253, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34543901

RESUMEN

Nanopesticides are innovative pesticides involving engineered nanomaterials in their formulation to increase the efficiency of plant protection products, while mitigating their environmental impact. Despite the predicted growth of the nanopesticide use, no data is available on their inhalation toxicity and the potential cocktail effects between their components. In particular, the neurodevelopmental toxicity caused by prenatal exposures might have long lasting consequences. In the present study, we repeatedly exposed gestating mice in a whole-body exposure chamber to three aerosols, involving the paraquat herbicide, nanoscaled titanium dioxide particles (nTiO2), or a mixture of both. Particle number concentrations and total mass concentrations were followed to enable a metrological follow-up of the exposure sessions. Based on the aerosols characteristics, the alveolar deposited dose in mice was then estimated. RNA-seq was used to highlight dysregulations in the striatum of pups in response to the in utero exposure. Modifications in gene expression were identified at post-natal day 14, which might reflect neurodevelopmental alterations in this key brain area. The data suggest an alteration in the mitochondrial function following paraquat exposure, which is reminiscent of the pathological process leading to Parkinson disease. Markers of different cell lineages were dysregulated, showing effects, which were not limited to dopaminergic neurons. Exposure to the nTiO2 aerosol modulated the regulation of cytokines and neurotransmitters pathways, perhaps reflecting a minor neuroinflammation. No synergy was found between paraquat and nTiO2. Instead, the neurodevelopmental effects were surprisingly lower than the one measured for each substance separately.


Asunto(s)
Paraquat , Efectos Tardíos de la Exposición Prenatal , Aerosoles , Animales , Encéfalo , Femenino , Expresión Génica , Exposición por Inhalación , Ratones , Paraquat/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética , Titanio/toxicidad
11.
Cells ; 10(6)2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071979

RESUMEN

Thyroid hormones (TH) contribute to the control of adaptive thermogenesis, which is associated with both higher energy expenditure and lower body mass index. While it was clearly established that TH act directly in the target tissues to fulfill its metabolic activities, some studies have rather suggested that TH act in the hypothalamus to control these processes. This paradigm shift has subjected the topic to intense debates. This review aims to recapitulate how TH control adaptive thermogenesis and to what extent the brain is involved in this process. This is of crucial importance for the design of new pharmacological agents that would take advantage of the TH metabolic properties.


Asunto(s)
Metabolismo Energético/fisiología , Hipotálamo/fisiología , Termogénesis/fisiología , Hormonas Tiroideas/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Humanos
12.
Endocrinology ; 162(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34086893

RESUMEN

Skeletal muscle (SM) weakness occurs in hypothyroidism and resistance to thyroid hormone α (RTHα) syndrome. However, the cell signaling and molecular mechanism(s) underlying muscle weakness under these conditions is not well understood. We thus examined the role of thyroid hormone receptor α (TRα), the predominant TR isoform in SM, on autophagy, mitochondrial biogenesis, and metabolism to demonstrate the molecular mechanism(s) underlying muscle weakness in these two conditions. Two genetic mouse models were used in this study: TRα1PV/+ mice, which express the mutant Thra1PV gene ubiquitously, and SM-TRα1L400R/+ mice, which express TRα1L400R in a muscle-specific manner. Gastrocnemius muscle from TRα1PV/+, SM-TRα1L400R/+, and their control mice was harvested for analyses. We demonstrated that loss of TRα1 signaling in gastrocnemius muscle from both the genetic mouse models led to decreased autophagy as evidenced by accumulation of p62 and decreased expression of lysosomal markers (lysosomal-associated membrane protein [LAMP]-1 and LAMP-2) and lysosomal proteases (cathepsin B and cathepsin D). The expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), mitochondrial transcription factor A (TFAM), and estrogen-related receptor α (ERRα), key factors contributing to mitochondrial biogenesis as well as mitochondrial proteins, were decreased, suggesting that there was reduced mitochondrial biogenesis due to the expression of mutant TRα1. Transcriptomic and metabolomic analyses of SM suggested that lipid catabolism was impaired and was associated with decreased acylcarnitines and tricarboxylic acid cycle intermediates in the SM from the mouse line expressing SM-specific mutant TRα1. Our results provide new insight into TRα1-mediated cell signaling, molecular, and metabolic changes that occur in SM when TR action is impaired.


Asunto(s)
Autofagia , Metabolismo de los Lípidos , Recambio Mitocondrial , Músculo Esquelético/metabolismo , Receptores alfa de Hormona Tiroidea/metabolismo , Animales , Metabolismo Energético , Hipotiroidismo/metabolismo , Masculino , Ratones , Músculo Esquelético/citología , Mutación , Receptores alfa de Hormona Tiroidea/genética
14.
FASEB J ; 34(11): 15480-15491, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32969079

RESUMEN

Thyroid hormones are important for homeostatic control of energy metabolism and body temperature. Although skeletal muscle is considered a key site for thyroid action, the contribution of thyroid hormone receptor signaling in muscle to whole-body energy metabolism and body temperature has not been resolved. Here, we show that T3-induced increase in energy expenditure requires thyroid hormone receptor alpha 1 (TRα1 ) in skeletal muscle, but that T3-mediated elevation in body temperature is achieved in the absence of muscle-TRα1 . In slow-twitch soleus muscle, loss-of-function of TRα1 (TRαHSACre ) alters the fiber-type composition toward a more oxidative phenotype. The change in fiber-type composition, however, does not influence the running capacity or motivation to run. RNA-sequencing of soleus muscle from WT mice and TRαHSACre mice revealed differentiated transcriptional regulation of genes associated with muscle thermogenesis, such as sarcolipin and UCP3, providing molecular clues pertaining to the mechanistic underpinnings of TRα1 -linked control of whole-body metabolic rate. Together, this work establishes a fundamental role for skeletal muscle in T3-stimulated increase in whole-body energy expenditure.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Músculo Esquelético/fisiología , Receptores alfa de Hormona Tiroidea/fisiología , Hormonas Tiroideas/farmacología , Animales , Masculino , Ratones , Ratones Noqueados , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Lenta/citología , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Condicionamiento Físico Animal , Transcriptoma
15.
FASEB J ; 34(9): 12072-12082, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32776612

RESUMEN

Mammals adapt to seasons using a neuroendocrine calendar defined by the photoperiodic change in the nighttime melatonin production. Under short photoperiod, melatonin inhibits the pars tuberalis production of TSHß, which, in turn, acts on tanycytes to regulate the deiodinase 2/3 balance resulting in a finely tuned seasonal control of the intra-hypothalamic thyroid hormone T3. Despite the pivotal role of this T3 signaling for synchronizing reproduction with the seasons, T3 cellular targets remain unknown. One candidate is a population of hypothalamic neurons expressing Rfrp, the gene encoding the RFRP-3 peptide, thought to be integral for modulating rodent's seasonal reproduction. Here we show that nighttime melatonin supplementation in the drinking water of melatonin-deficient C57BL/6J mice mimics photoperiodic variations in the expression of the genes Tshb, Dio2, Dio3, and Rfrp, as observed in melatonin-proficient mammals. Notably, we report that this melatonin regulation of Rfrp expression is no longer observed in mice carrying a global mutation of the T3 receptor, TRα, but is conserved in mice with a selective neuronal mutation of TRα. In line with this observation, we find that TRα is widely expressed in the tanycytes. Altogether, our data demonstrate that the melatonin-driven T3 signal regulates RFRP-3 neurons through non-neuronal, possibly tanycytic, TRα.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Melatonina/farmacología , Neuropéptidos/biosíntesis , Receptores de Hormona Tiroidea/metabolismo , Triyodotironina/metabolismo , Animales , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Ratones , Ratones Noqueados , Neuropéptidos/genética , Receptores de Hormona Tiroidea/genética , Triyodotironina/genética , Yodotironina Deyodinasa Tipo II
16.
Thyroid ; 29(9): 1327-1335, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31298651

RESUMEN

Background: Resistance to thyroid hormone alpha (RTHα) is a rare genetic disease due to mutations in the THRA gene, which encodes thyroid hormone receptor alpha 1 (TRα1). Since its first description in 2012, 46 cases of RTHα have been reported worldwide, corresponding to 26 different mutations of TRα1. RTHα patients share some common symptoms with hypothyroid patients, without significant reduction in thyroid hormone level. The high variability of clinical features and the absence of reliable biochemical markers make the diagnosis of this disease difficult. Some of these mutations have been recently modeled in mice. Methods: In our study, we used four different mouse models heterozygous for frameshift mutations in the Thra gene. Two of them are very close to human mutations, while the two others have not yet been found in patients. We characterized the metabolic phenotypes of urine and plasma samples collected from these four animal models using an untargeted nuclear magnetic resonance (NMR)-based metabolomic approach. Results: Multivariate statistical analysis of the metabolomic profiles shows that biofluids of mice that carry human-like mutations can be discriminated from controls. Metabolic signatures associated with Thra mutations in urine and plasma are stable over time and clearly differ from the metabolic fingerprint of hypothyroidism in the mouse. Conclusion: Our results provide a proof-of-principle that easily accessible NMR-based metabolic fingerprints of biofluids could be used to diagnose RTHα in humans.


Asunto(s)
Líquidos Corporales/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Mutación , Receptores alfa de Hormona Tiroidea/genética , Animales , Genes erbA , Humanos , Hipotiroidismo/genética , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Ann Endocrinol (Paris) ; 80(2): 89-95, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30292450

RESUMEN

OBJECTIVES: The tissue renin-angiotensin system (tRAS) plays a key role in the maintenance of cellular homeostasis but is also implicated in atherosclerosis. Thyroid hormone (TH) contributes, via genomic effects, to control of tRAS gene expression in the arterial wall and vascular smooth muscle cells (VSMCs). We investigated the specific functions of TH receptors-α and -ß (TRα and TRß) on tRAS gene expression in the aorta and VSMCs, and the potential protective effect of TRα against atherosclerosis. MATERIAL AND METHODS: Using aorta and cultured aortic VSMCs from TRα and TRß deficient mice, tRAS gene expression was analyzed by determining mRNA levels on real-time PCR. Gene regulation under cholesterol loading mimicking atherosclerosis conditions was also examined in VSMCs in vitro. RESULTS: TRα deletion significantly increased expression of angiotensinogen (AGT) and angiotensin II receptor type 1 subtype a (AT1Ra) at transcriptional level in aorta, a tissue with high TRα expression level. TRα activity thus seems to be required for maintenance of physiological levels of AGTand AT1Raexpression in the arterial wall. In addition, during cholesterol loading, TRα deletion significantly increased cholesterol content in VSMCs, with a weaker decrease in AGTexpression. CONCLUSION: TRα seems to have an inhibitory impact on AGTand AT1Raexpression, and loss of TRα function in TRα0/0 mice increases tRAS expression in the aortic wall. More importantly, TRα deletion significantly increases VSMC cholesterol content. Our results are consistent with a protective role of TRα against atherosclerosis.


Asunto(s)
Arterias/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Colesterol/metabolismo , Músculo Liso Vascular/metabolismo , Sistema Renina-Angiotensina/genética , Receptores alfa de Hormona Tiroidea/fisiología , Animales , Arterias/patología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Sistema Renina-Angiotensina/efectos de los fármacos , Receptores alfa de Hormona Tiroidea/agonistas , Receptores alfa de Hormona Tiroidea/genética , Hormonas Tiroideas/farmacología
18.
J Cachexia Sarcopenia Muscle ; 10(1): 35-53, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30461220

RESUMEN

BACKGROUND: The protein kinase mechanistic target of rapamycin (mTOR) controls cellular growth and metabolism. Although balanced mTOR signalling is required for proper muscle homeostasis, partial mTOR inhibition by rapamycin has beneficial effects on various muscle disorders and age-related pathologies. Besides, more potent mTOR inhibitors targeting mTOR catalytic activity have been developed and are in clinical trials. However, the physiological impact of loss of mTOR catalytic activity in skeletal muscle is currently unknown. METHODS: We have generated the mTORmKOKI mouse model in which conditional loss of mTOR is concomitant with expression of kinase inactive mTOR in skeletal muscle. We performed a comparative phenotypic and biochemical analysis of mTORmKOKI mutant animals with muscle-specific mTOR knockout (mTORmKO) littermates. RESULTS: In striking contrast with mTORmKO littermates, mTORmKOKI mice developed an early onset rapidly progressive myopathy causing juvenile lethality. More than 50% mTORmKOKI mice died before 8 weeks of age, and none survived more than 12 weeks, while mTORmKO mice died around 7 months of age. The growth rate of mTORmKOKI mice declined beyond 1 week of age, and the animals showed profound alterations in body composition at 4 weeks of age. At this age, their body weight was 64% that of mTORmKO mice (P < 0.001) due to significant reduction in lean and fat mass. The mass of isolated muscles from mTORmKOKI mice was remarkably decreased by 38-56% (P < 0.001) as compared with that from mTORmKO mice. Histopathological analysis further revealed exacerbated dystrophic features and metabolic alterations in both slow/oxidative and fast/glycolytic muscles from mTORmKOKI mice. We show that the severity of the mTORmKOKI as compared with the mild mTORmKO phenotype is due to more robust suppression of muscle mTORC1 signalling leading to stronger alterations in protein synthesis, oxidative metabolism, and autophagy. This was accompanied with stronger feedback activation of PKB/Akt and dramatic down-regulation of glycogen phosphorylase expression (0.16-fold in tibialis anterior muscle, P < 0.01), thus causing features of glycogen storage disease type V. CONCLUSIONS: Our study demonstrates a critical role for muscle mTOR catalytic activity in the regulation of whole-body growth and homeostasis. We suggest that skeletal muscle targeting with mTOR catalytic inhibitors may have detrimental effects. The mTORmKOKI mutant mouse provides an animal model for the pathophysiological understanding of muscle mTOR activity inhibition as well as for mechanistic investigation of the influence of skeletal muscle perturbations on whole-body homeostasis.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/genética , Serina-Treonina Quinasas TOR/genética , Animales , Modelos Animales de Enfermedad , Homeostasis , Humanos , Masculino , Ratones Transgénicos , Enfermedades Musculares/metabolismo
19.
J Vasc Res ; 55(4): 224-234, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30092589

RESUMEN

Thyroid hormone (TH) regulates gene transcription by binding to TH receptors (TRs). TRs regulate the genes of lipid metabolism and the renin-angiotensin system (RAS). We examined the effect of TRα deletion in ApoE-/- mice (DKO mice) on the following: (i) the expression of genes controlling cholesterol metabolism and tissue (t)RAS in the liver and aorta and (ii) the expression of these genes and the regulation of cholesterol content in cultured vascular smooth muscle cells (VSMCs). TRα deletion in ApoE-/- mice led to the repression of genes involved in the synthesis and influx of cholesterol in the liver. However, TRα deletion in the arterial wall suppressed the expression of genes involved in the esterification and excretion of cholesterol and enhanced the expression of angiotensinogen (AGT). The VSMCs of the ApoE-/- and DKO mice increased their cholesterol content during cholesterol loading, but failed to increase the expression of ATP-binding cassette transporter A1 (ABCA1). T3 addition partially corrected these abnormalities in the cells of the ApoE-/- mice but not those of the DKO mice. In conclusion, TRα deletion in ApoE-/- mice slightly increases the expression of tRAS in the aorta and aggravates the dysregulation of cholesterol content in the VSMCs.


Asunto(s)
Apolipoproteínas E/deficiencia , Colesterol/metabolismo , Músculo Liso Vascular/metabolismo , Sistema Renina-Angiotensina/fisiología , Receptores alfa de Hormona Tiroidea/deficiencia , Transportador 1 de Casete de Unión a ATP/genética , Animales , Aorta/química , Apolipoproteínas E/genética , Apolipoproteínas E/fisiología , Aterosclerosis/diagnóstico por imagen , Células Cultivadas , Colesterol/administración & dosificación , Colesterol/genética , Expresión Génica , Hibridación Genética , Hígado/química , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/química , Músculo Liso Vascular/citología , ARN Mensajero , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/fisiología , Triyodotironina/farmacología , Ultrasonografía
20.
Sci Signal ; 11(536)2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29945885

RESUMEN

Thyroid hormone receptor ß1 (THRB1) and estrogen-related receptor α (ESRRA; also known as ERRα) both play important roles in mitochondrial activity. To understand their potential interactions, we performed transcriptome and ChIP-seq analyses and found that many genes that were co-regulated by both THRB1 and ESRRA were involved in mitochondrial metabolic pathways. These included oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and ß-oxidation of fatty acids. TH increased ESRRA expression and activity in a THRB1-dependent manner through the induction of the transcriptional coactivator PPARGC1A (also known as PGC1α). Moreover, TH induced mitochondrial biogenesis, fission, and mitophagy in an ESRRA-dependent manner. TH also induced the expression of the autophagy-regulating kinase ULK1 through ESRRA, which then promoted DRP1-mediated mitochondrial fission. In addition, ULK1 activated the docking receptor protein FUNDC1 and its interaction with the autophagosomal protein MAP1LC3B-II to induce mitophagy. siRNA knockdown of ESRRA, ULK1, DRP1, or FUNDC1 inhibited TH-induced autophagic clearance of mitochondria through mitophagy and decreased OXPHOS. These findings show that many of the mitochondrial actions of TH are mediated through stimulation of ESRRA expression and activity, and co-regulation of mitochondrial turnover through the PPARGC1A-ESRRA-ULK1 pathway is mediated by their regulation of mitochondrial fission and mitophagy. Hormonal or pharmacologic induction of ESRRA expression or activity could improve mitochondrial quality in metabolic disorders.


Asunto(s)
Autofagia , Mitocondrias/fisiología , Dinámicas Mitocondriales , Mitofagia , Receptores de Estrógenos/metabolismo , Receptores beta de Hormona Tiroidea/fisiología , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosforilación , Receptores de Estrógenos/genética , Receptor Relacionado con Estrógeno ERRalfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...