Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Cells ; 13(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38786098

RESUMEN

Breast cancer develops upon sequential acquisition of driver mutations in mammary epithelial cells; however, how these mutations collaborate to transform normal cells remains unclear in most cases. We aimed to reconstitute this process in a particular case. To this end, we combined the activated form of the PI 3-kinase harboring the H1047R mutation with the inactivation of the histone lysine methyl-transferase KMT2D in the non-tumorigenic human mammary epithelial cell line MCF10A. We found that PI 3-kinase activation promoted cell-cycle progression, especially when growth signals were limiting, as well as cell migration, both in a collective monolayer and as single cells. Furthermore, we showed that KMT2D inactivation had relatively little influence on these processes, except for single-cell migration, which KMT2D inactivation promoted in synergy with PI 3-kinase activation. The combination of these two genetic alterations induced expression of the ARPC5L gene that encodes a subunit of the Arp2/3 complex. ARPC5L depletion fully abolished the enhanced migration persistence exhibited by double-mutant cells. Our reconstitution approach in MCF10A has thus revealed both the cell function and the single-cell migration, and the underlying Arp2/3-dependent mechanism, which are synergistically regulated when KMT2D inactivation is combined with the activation of the PI 3-kinase.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Movimiento Celular , Células Epiteliales , N-Metiltransferasa de Histona-Lisina , Fosfatidilinositol 3-Quinasas , Humanos , Movimiento Celular/genética , Células Epiteliales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Femenino , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/citología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Mutación/genética , Línea Celular
2.
J Cell Sci ; 137(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38059420

RESUMEN

The Rac1-WAVE-Arp2/3 pathway pushes the plasma membrane by polymerizing branched actin, thereby powering membrane protrusions that mediate cell migration. Here, using knockdown (KD) or knockout (KO), we combine the inactivation of the Arp2/3 inhibitory protein arpin, the Arp2/3 subunit ARPC1A and the WAVE complex subunit CYFIP2, all of which enhance the polymerization of cortical branched actin. Inactivation of the three negative regulators of cortical branched actin increases migration persistence of human breast MCF10A cells and of endodermal cells in the zebrafish embryo, significantly more than any single or double inactivation. In the triple KO cells, but not in triple KD cells, the 'super-migrator' phenotype was associated with a heterogenous downregulation of vimentin (VIM) expression and a lack of coordination in collective behaviors, such as wound healing and acinus morphogenesis. Re-expression of vimentin in triple KO cells largely restored normal persistence of single cell migration, suggesting that vimentin downregulation contributes to the maintenance of the super-migrator phenotype in triple KO cells. Constant excessive production of branched actin at the cell cortex thus commits cells into a motile state through changes in gene expression.


Asunto(s)
Actinas , Pez Cebra , Animales , Humanos , Actinas/metabolismo , Vimentina/genética , Vimentina/metabolismo , Pez Cebra/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Movimiento Celular/fisiología , Proteínas Portadoras/metabolismo
3.
Sci Adv ; 9(37): eadd9084, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703363

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is part of the amino acid sensing machinery that becomes activated on the endolysosomal surface in response to nutrient cues. Branched actin generated by WASH and Arp2/3 complexes defines endolysosomal microdomains. Here, we find mTORC1 components in close proximity to endolysosomal actin microdomains. We investigated for interactors of the mTORC1 lysosomal tether, RAGC, by proteomics and identified multiple actin filament capping proteins and their modulators. Perturbation of RAGC function affected the size of endolysosomal actin, consistent with a regulation of actin filament capping by RAGC. Reciprocally, the pharmacological inhibition of actin polymerization or alteration of endolysosomal actin obtained upon silencing of WASH or Arp2/3 complexes impaired mTORC1 activity. Mechanistically, we show that actin is required for proper association of RAGC and mTOR with endolysosomes. This study reveals an unprecedented interplay between actin and mTORC1 signaling on the endolysosomal system.


Asunto(s)
Actinas , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina , Citoesqueleto de Actina , Lisosomas
4.
Nat Commun ; 14(1): 3541, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322026

RESUMEN

The RAC1-WAVE-Arp2/3 signaling pathway generates branched actin networks that power lamellipodium protrusion of migrating cells. Feedback is thought to control protrusion lifetime and migration persistence, but its molecular circuitry remains elusive. Here, we identify PPP2R1A by proteomics as a protein differentially associated with the WAVE complex subunit ABI1 when RAC1 is activated and downstream generation of branched actin is blocked. PPP2R1A is found to associate at the lamellipodial edge with an alternative form of WAVE complex, the WAVE Shell Complex, that contains NHSL1 instead of the Arp2/3 activating subunit WAVE, as in the canonical WAVE Regulatory Complex. PPP2R1A is required for persistence in random and directed migration assays and for RAC1-dependent actin polymerization in cell extracts. PPP2R1A requirement is abolished by NHSL1 depletion. PPP2R1A mutations found in tumors impair WAVE Shell Complex binding and migration regulation, suggesting that the coupling of PPP2R1A to the WAVE Shell Complex is essential to its function.


Asunto(s)
Actinas , Seudópodos , Actinas/metabolismo , Movimiento Celular/fisiología , Seudópodos/metabolismo , Transducción de Señal , Citoplasma/metabolismo , Factores de Transcripción/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo
7.
Front Pharmacol ; 13: 896994, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707404

RESUMEN

Branched actin networks polymerized by the Actin-related protein 2 and 3 (Arp2/3) complex play key roles in force generation and membrane remodeling. These networks are particularly important for cell migration, where they drive membrane protrusions of lamellipodia. Several Arp2/3 inhibitory compounds have been identified. Among them, the most widely used is CK-666 (2-Fluoro-N-[2-(2-methyl-1H-indol-3-yl)ethyl]-benzamide), whose mode of action is to prevent Arp2/3 from reaching its active conformation. Here 74 compounds structurally related to CK-666 were screened using a variety of assays. The primary screen involved EdU (5-ethynyl-2'-deoxyuridine) incorporation in untransformed MCF10A cells. The resulting nine positive hits were all blocking lamellipodial protrusions and cell migration in B16-F1 melanoma cells in secondary screens, showing that cell cycle progression can be a useful read-out of Arp2/3 activity. Selected compounds were also characterized on sea urchin embryos, where Arp2/3 inhibition yields specific phenotypes such as the lack of triradiate spicules and inhibition of archenteron elongation. Several compounds were filtered out due to their toxicity in cell cultures or on sea urchin development. Two CK-666 analogs, 59 (N-{2-[5-(Benzyloxy)-2-methyl-1H-indol-3-yl] ethyl}-3-bromobenzamide) and 69 (2,4-Dichloro-N-[2-(7-chloro-2-methyl-1H-indol-3-yl) ethyl]-5-[(dimethylamino) sulfonyl] benzamide), were active in all assays and significantly more efficient in vivo than CK-666. These best hits with increased in vivo potency were, however, slightly less efficient in vitro than CK-666 in the classical pyrene-actin assay. Induced-fit docking of selected compounds and their possible metabolites revealed interaction with Arp2/3 that suppresses Arp2/3 activation. The data obtained in our screening validated the applicability of original assays for Arp2/3 activity. Several previously unexplored CK-666 structural analogs were found to suppress Arp2/3 activation, and two of them were identified as Arp2/3 inhibitors with improved in vivo efficiency.

8.
Int J Mol Sci ; 23(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563538

RESUMEN

Cullin 3 (CUL3) is the scaffold of Cullin3 Ring E3-ligases (CRL3s), which use various BTB-adaptor proteins to ubiquitinate numerous substrates targeting their proteasomal degradation. CUL3 mutations, responsible for a severe form of familial hyperkalemia and hypertension (FHHt), all result in a deletion of exon 9 (amino-acids 403-459) (CUL3-∆9). Surprisingly, while CUL3-∆9 is hyperneddylated, a post-translational modification that typically activates CRL complexes, it is unable to ubiquitinate its substrates. In order to understand the mechanisms behind this loss-of function, we performed comparative label-free quantitative analyses of CUL3 and CUL3-∆9 interactome by mass spectrometry. It was observed that CUL3-∆9 interactions with COP9 and CAND1, both involved in CRL3 complexes' dynamic assembly, were disrupted. These defects result in a reduction in the dynamic cycling of the CRL3 complexes, making the CRL3-∆9 complex an inactive BTB-adaptor trap, as demonstrated by SILAC experiments. Collectively, the data indicated that the hyperneddylated CUL3-∆9 protein is inactive as a consequence of several structural changes disrupting its dynamic interactions with key regulatory partners.


Asunto(s)
Proteínas Cullin/genética , Hipertensión , Seudohipoaldosteronismo , Proteínas Cullin/metabolismo , Exones/genética , Femenino , Humanos , Hipertensión/genética , Masculino , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Ubiquitina-Proteína Ligasas/genética
9.
Nat Commun ; 13(1): 628, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110533

RESUMEN

Positive feedback loops involving signaling and actin assembly factors mediate the formation and remodeling of branched actin networks in processes ranging from cell and organelle motility to mechanosensation. The Arp2/3 complex inhibitor Arpin controls the directional persistence of cell migration by interrupting a feedback loop involving Rac-WAVE-Arp2/3 complex, but Arpin's mechanism of inhibition is unknown. Here, we describe the cryo-EM structure of Arpin bound to Arp2/3 complex at 3.24-Å resolution. Unexpectedly, Arpin binds Arp2/3 complex similarly to WASP-family nucleation-promoting factors (NPFs) that activate the complex. However, whereas NPFs bind to two sites on Arp2/3 complex, on Arp2-ArpC1 and Arp3, Arpin only binds to the site on Arp3. Like NPFs, Arpin has a C-helix that binds at the barbed end of Arp3. Mutagenesis studies in vitro and in cells reveal how sequence differences within the C-helix define the molecular basis for inhibition by Arpin vs. activation by NPFs.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/efectos de los fármacos , Proteínas Portadoras/farmacología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Sitios de Unión , Movimiento Celular/efectos de los fármacos , Microscopía por Crioelectrón , Proteínas del Citoesqueleto , Humanos , Modelos Moleculares , Unión Proteica , Seudópodos , Transducción de Señal
10.
Trends Cell Biol ; 32(5): 421-432, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34836783

RESUMEN

Arp2/3 complex is an actin filament nucleation and branching machinery conserved in all eukaryotes from yeast to human. Arp2/3 complex branched networks generate pushing forces that drive cellular processes ranging from membrane remodeling to cell and organelle motility. Several molecules regulate these processes by directly inhibiting or activating Arp2/3 complex and by stabilizing or disassembling branched networks. Here, we review recent advances in our understanding of Arp2/3 complex regulation, including high-resolution cryoelectron microscopy (cryo-EM) structures that illuminate the mechanisms of Arp2/3 complex activation and branch formation, and novel cellular pathways of branch formation, stabilization, and debranching. We also identify major gaps in our understanding of Arp2/3 complex inhibition and branch stabilization and disassembly.


Asunto(s)
Citoesqueleto de Actina , Actinas , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Microscopía por Crioelectrón , Humanos , Unión Proteica , Saccharomyces cerevisiae/metabolismo
11.
Biochemistry (Mosc) ; 87(12): 1651-1661, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36717454

RESUMEN

Epithelial-mesenchymal transition (EMT) is a critical step in tumor progression that leads to the acquisition by cancer cells the capacity for migration using the mesenchymal motility mode regulated by the Rac→WAVE→Arp2/3 signaling pathway. Earlier it was shown that proteins interacting with Rac can regulate mesenchymal migration and thus determine the metastatic potential of the cells. The search for new regulators of cell migration is an important theoretical and practical task. The adaptor protein Anks1a is one of the proteins interacting with Rac, whose expression is altered in many types of tumors. The aim of this study was to find whether Anks1a affects the migration of cancer cells and to identify the mechanism underlying this effect. It was suggested that Anks1a can influence cancer cell migration either as a Rac1 effector or by activating human epidermal growth factor receptor 2 (HER2) exchange. We investigated how upregulation and inhibition of Anks1a expression affected migration of breast cancer cells with different HER2 status. Anks1a was shown to interact with the activated form of Rac1. In the MDA-MB-231 cells (triple negative cancer), which lack HER2, Anks1a accumulated at the active cell edge, which is characterized by enrichment with active Rac1, whereas no such accumulation was observed in the HER2-overexpressing SK-BR-3 cells. Downregulation of the ANKS1a expression with esiRNA had almost no effect on the cancer cell motility, except a slight increase in the average migration rate of MDA-MB-231 cells. Among three cell lines tested, overexpression of Anks1a increased the migration rate of HER2-overexpressng SK-BR-3 cells only. We showed that Anks1a is an effector of activated Rac1, but its influence on the cell migration in this capacity was minimal, at least in the studied breast cancer cells. Anks1a affected the motility of breast cancer cells due to its involvement in the EGF receptor exchange.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Femenino , Humanos , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Transducción de Señal
12.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36613756

RESUMEN

Whole exome sequencing of invasive mammary carcinomas revealed the association of mutations in PTEN and ZFHX3 tumor suppressor genes (TSGs). We generated single and combined PTEN and ZFHX3 knock-outs (KOs) in the immortalized mammary epithelial cell line MCF10A to study the role of these genes and their potential synergy in migration regulation. Inactivation of PTEN, but not ZFHX3, induced the formation of large colonies in soft agar. ZFHX3 inactivation in PTEN KO, however, increased colony numbers and normalized their size. Cell migration was affected in different ways upon PTEN and ZFHX3 KO. Inactivation of PTEN enhanced coordinated cell motility and thus, the collective migration of epithelial islets and wound healing. In contrast, ZFHX3 knockout resulted in the acquisition of uncoordinated cell movement associated with the appearance of immature adhesive junctions (AJs) and the increased expression of the mesenchymal marker vimentin. Inactivation of the two TSGs thus induces different stages of partial epithelial-to-mesenchymal transitions (EMT). Upon double KO (DKO), cells displayed still another motile state, characterized by a decreased coordination in collective migration and high levels of vimentin but a restoration of mature linear AJs. This study illustrates the plasticity of migration modes of mammary cells transformed by a combination of cancer-associated genes.


Asunto(s)
Mama , Células Epiteliales , Humanos , Vimentina/metabolismo , Mama/metabolismo , Células Epiteliales/metabolismo , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas de Homeodominio/genética
13.
Nat Cell Biol ; 23(11): 1148-1162, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34737443

RESUMEN

Actin filaments generate mechanical forces that drive membrane movements during trafficking, endocytosis and cell migration. Reciprocally, adaptations of actin networks to forces regulate their assembly and architecture. Yet, a demonstration of forces acting on actin regulators at actin assembly sites in cells is missing. Here we show that local forces arising from actin filament elongation mechanically control WAVE regulatory complex (WRC) dynamics and function, that is, Arp2/3 complex activation in the lamellipodium. Single-protein tracking revealed WRC lateral movements along the lamellipodium tip, driven by elongation of actin filaments and correlating with WRC turnover. The use of optical tweezers to mechanically manipulate functional WRC showed that piconewton forces, as generated by single-filament elongation, dissociated WRC from the lamellipodium tip. WRC activation correlated with its trapping, dwell time and the binding strength at the lamellipodium tip. WRC crosslinking, hindering its mechanical dissociation, increased WRC dwell time and Arp2/3-dependent membrane protrusion. Thus, forces generated by individual actin filaments on their regulators can mechanically tune their turnover and hence activity during cell migration.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Movimiento Celular , Fibroblastos/metabolismo , Mecanotransducción Celular , Seudópodos/metabolismo , Citoesqueleto de Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/genética , Animales , Línea Celular Transformada , Ratones , Microscopía Fluorescente , Pinzas Ópticas , Imagen Individual de Molécula , Estrés Mecánico , Factores de Tiempo
14.
Front Cell Dev Biol ; 9: 625719, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34012961

RESUMEN

The intestinal epithelial barrier (IEB) depends on stable interepithelial protein complexes such as tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton. During inflammation, the IEB is compromised due to TJ protein internalization and actin remodeling. An important actin regulator is the actin-related protein 2/3 (Arp2/3) complex, which induces actin branching. Activation of Arp2/3 by nucleation-promoting factors is required for the formation of epithelial monolayers, but little is known about the relevance of Arp2/3 inhibition and endogenous Arp2/3 inhibitory proteins for IEB regulation. We found that the recently identified Arp2/3 inhibitory protein arpin was strongly expressed in intestinal epithelial cells. Arpin expression decreased in response to tumor necrosis factor (TNF)α and interferon (IFN)γ treatment, whereas the expression of gadkin and protein interacting with protein C-kinase α-subunit 1 (PICK1), other Arp2/3 inhibitors, remained unchanged. Of note, arpin coprecipitated with the TJ proteins occludin and claudin-1 and the AJ protein E-cadherin. Arpin depletion altered the architecture of both AJ and TJ, increased actin filament content and actomyosin contractility, and significantly increased epithelial permeability, demonstrating that arpin is indeed required for maintaining IEB integrity. During experimental colitis in mice, arpin expression was also decreased. Analyzing colon tissues from ulcerative colitis patients by Western blot, we found different arpin levels with overall no significant changes. However, in acutely inflamed areas, arpin was significantly reduced compared to non-inflamed areas. Importantly, patients receiving mesalazine had significantly higher arpin levels than untreated patients. As arpin depletion (theoretically meaning more active Arp2/3) increased permeability, we wanted to know whether Arp2/3 inhibition would show the opposite. Indeed, the specific Arp2/3 inhibitor CK666 ameliorated TNFα/IFNγ-induced permeability in established Caco-2 monolayers by preventing TJ disruption. CK666 treatment also attenuated colitis development, colon tissue damage, TJ disruption, and permeability in dextran sulphate sodium (DSS)-treated mice. Our results demonstrate that loss of arpin triggers IEB dysfunction during inflammation and that low arpin levels can be considered a novel hallmark of acute inflammation.

15.
Front Cell Dev Biol ; 9: 658865, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869225

RESUMEN

The Arp2/3 complex generates branched actin networks at different locations of the cell. The WASH and WAVE Nucleation Promoting Factors (NPFs) activate the Arp2/3 complex at the surface of endosomes or at the cell cortex, respectively. In this review, we will discuss how these two NPFs are controlled within distinct, yet related, multiprotein complexes. These complexes are not spontaneously assembled around WASH and WAVE, but require cellular assembly factors. The centrosome, which nucleates microtubules and branched actin, appears to be a privileged site for WASH complex assembly. The actin and microtubule cytoskeletons are both responsible for endosome shape and membrane remodeling. Motors, such as dynein, pull endosomes and extend membrane tubules along microtubule tracks, whereas branched actin pushes onto the endosomal membrane. It was recently uncovered that WASH assembles a super complex with dynactin, the major dynein activator, where the Capping Protein (CP) is exchanged from dynactin to the WASH complex. This CP swap initiates the first actin filament that primes the autocatalytic nucleation of branched actin at the surface of endosomes. Possible coordination between pushing and pulling forces in the remodeling of endosomal membranes is discussed.

16.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923443

RESUMEN

During cell migration, protrusion of the leading edge is driven by the polymerization of Arp2/3-dependent branched actin networks. Migration persistence is negatively regulated by the Arp2/3 inhibitory protein Arpin. To better understand Arpin regulation in the cell, we looked for its interacting partners and identified both Tankyrase 1 and 2 (TNKS) using a yeast two-hybrid screening and coimmunoprecipitation with full-length Arpin as bait. Arpin interacts with ankyrin repeats of TNKS through a C-terminal-binding site on its acidic tail, which overlaps with the Arp2/3-binding site. Arpin was found to dissolve the liquid-liquid phase separation of TNKS upon overexpression. To uncouple the interactions of Arpin with TNKS and Arp2/3, we introduced point mutations in the Arpin tail and attempted to rescue the increased migration persistence of the Arpin knockout cells using random plasmid integration or compensating knock-ins at the ARPIN locus. Arpin mutations impairing interactions with either Arp2/3 or TNKS were insufficient to fully abolish Arpin activity. Only the mutation that affected both interactions rendered Arpin completely inactive, suggesting the existence of two independent pathways, whereby Arpin controls the migration persistence.


Asunto(s)
Proteínas Portadoras/metabolismo , Movimiento Celular , Tanquirasas/metabolismo , Sitios de Unión , Proteínas Portadoras/química , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Tanquirasas/química , Técnicas del Sistema de Dos Híbridos
17.
Sci Adv ; 7(3)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523880

RESUMEN

Dendritic actin networks develop from a first actin filament through branching by the Arp2/3 complex. At the surface of endosomes, the WASH complex activates the Arp2/3 complex and interacts with the capping protein for unclear reasons. Here, we show that the WASH complex interacts with dynactin and uncaps it through its FAM21 subunit. In vitro, the uncapped Arp1/11 minifilament elongates an actin filament, which then primes the WASH-induced Arp2/3 branching reaction. In dynactin-depleted cells or in cells where the WASH complex is reconstituted with a FAM21 mutant that cannot uncap dynactin, formation of branched actin at the endosomal surface is impaired. Our results reveal the importance of the WASH complex in coordinating two complexes containing actin-related proteins.

18.
Br J Cancer ; 124(1): 102-114, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33204027

RESUMEN

Genomic instability and mutations underlie the hallmarks of cancer-genetic alterations determine cancer cell fate by affecting cell proliferation, apoptosis and immune response, and increasing data show that mutations are involved in metastasis, a crucial event in cancer progression and a life-threatening problem in cancer patients. Invasion is the first step in the metastatic cascade, when tumour cells acquire the ability to move, penetrate into the surrounding tissue and enter lymphatic and blood vessels in order to disseminate. A role for genetic alterations in invasion is not universally accepted, with sceptics arguing that cellular motility is related only to external factors such as hypoxia, chemoattractants and the rigidity of the extracellular matrix. However, increasing evidence shows that mutations might trigger and accelerate the migration and invasion of different types of cancer cells. In this review, we summarise data from published literature on the effect of chromosomal instability and genetic mutations on cancer cell migration and invasion.


Asunto(s)
Movimiento Celular/genética , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Neoplasias/genética , Neoplasias/patología , Animales , Humanos , Mutación
19.
Biochem J ; 477(1): 1-21, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31913455

RESUMEN

A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Adhesión Celular , Proteínas de Unión al ADN/metabolismo , Forminas/metabolismo , Integrinas/metabolismo , Mecanotransducción Celular , Animales , Matriz Extracelular/metabolismo , Humanos , Ratones , Polimerizacion
20.
Bio Protoc ; 10(1): e3482, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654715

RESUMEN

The ability of cancer cells to migrate through a complex three-dimensional (3D) environment is a hallmark event of cancer metastasis. Therefore, an in vitro migration assay to evaluate cancer cell migration in a 3D setting is valuable to examine cancer progression. Here, we describe such a simple migration assay in a 3D collagen-fibronectin gel for observing cell morphology and comparing the migration abilities of cancer cells. We describe below how to prepare the collagen-fibronectin gel castings, how to set up time-lapse recording, how to draw single-cell trajectories from movies and extract key parameters that characterize cell motility, such as cell speed, directionality, mean square displacement, and directional persistence. In our set-up, cells are sandwiched in a single plane between two collagen-fibronectin gels. This trick facilitates the analysis of cell tracks, which are for the most part 2D, at least in the beginning, but in a 3D environment. This protocol has been previously published in Visweshwaran et al. (2018) and is described here in more detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA