Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38847494

RESUMEN

Visualization of protein dynamics is a crucial step in understanding cellular processes. Chromobodies, fluorescently labelled single-domain antibodies, have emerged as versatile probes for live cell imaging of endogenous proteins. However, how these chromobodies behave in vivo and how accurately they monitor tissue changes remain poorly explored. Here, we generated an endothelial-specific ß-catenin chromobody-derived probe and analyzed its expression pattern during cardiovascular development in zebrafish. Using high-resolution confocal imaging, we show that the chromobody signal correlates with the localization of ß-catenin in the nucleus and at cell-cell junctions, and thereby can be used to assess endothelial maturation. Loss of Cadherin 5 strongly affects the localization of the chromobody at the cell membrane, confirming the cadherin-based adherens junction role of ß-catenin. Furthermore, using a genetic model to block blood flow, we observed that cell junctions are compromised in most endothelial cells but not in the endocardium, highlighting the heterogeneous response of the endothelium to the lack of blood flow. Overall, our data further expand the use of chromobodies for in vivo applications and illustrate their potential to monitor tissue morphogenesis at high resolution.


Asunto(s)
Cadherinas , Morfogénesis , Proteínas de Pez Cebra , Pez Cebra , beta Catenina , Animales , Pez Cebra/embriología , Pez Cebra/metabolismo , beta Catenina/metabolismo , Cadherinas/metabolismo , Cadherinas/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Uniones Adherentes/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología , Endotelio Vascular/metabolismo , Endotelio Vascular/citología , Antígenos CD
2.
J Cardiovasc Dev Dis ; 9(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35050223

RESUMEN

Cardiac arrhythmia, or irregular heart rhythm, is associated with morbidity and mortality and is described as one of the most important future public health challenges. Therefore, developing new models of cardiac arrhythmia is critical for understanding disease mechanisms, determining genetic underpinnings, and developing new therapeutic strategies. In the last few decades, the zebrafish has emerged as an attractive model to reproduce in vivo human cardiac pathologies, including arrhythmias. Here, we highlight the contribution of zebrafish to the field and discuss the available cardiac arrhythmia models. Further, we outline techniques to assess potential heart rhythm defects in larval and adult zebrafish. As genetic tools in zebrafish continue to bloom, this model will be crucial for functional genomics studies and to develop personalized anti-arrhythmic therapies.

3.
Circ Res ; 126(8): 968-984, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32070236

RESUMEN

RATIONALE: The transcription factor NFATC1 (nuclear factor of activated T-cell 1) has been implicated in cardiac valve formation in humans and mice, but we know little about the underlying mechanisms. To gain mechanistic understanding of cardiac valve formation at single-cell resolution and insights into the role of NFATC1 in this process, we used the zebrafish model as it offers unique attributes for live imaging and facile genetics. OBJECTIVE: To understand the role of Nfatc1 in cardiac valve formation. METHODS AND RESULTS: Using the zebrafish atrioventricular valve, we focus on the valve interstitial cells (VICs), which confer biomechanical strength to the cardiac valve leaflets. We find that initially atrioventricular endocardial cells migrate collectively into the cardiac jelly to form a bilayered structure; subsequently, the cells that led this migration invade the ECM (extracellular matrix) between the 2 endocardial cell monolayers, undergo endothelial-to-mesenchymal transition as marked by loss of intercellular adhesion, and differentiate into VICs. These cells proliferate and are joined by a few neural crest-derived cells. VIC expansion and a switch from a promigratory to an elastic ECM drive valve leaflet elongation. Functional analysis of Nfatc1 reveals its requirement during VIC development. Zebrafish nfatc1 mutants form significantly fewer VICs due to reduced proliferation and impaired recruitment of endocardial and neural crest cells during the early stages of VIC development. With high-speed microscopy and echocardiography, we show that reduced VIC formation correlates with valvular dysfunction and severe retrograde blood flow that persist into adulthood. Analysis of downstream effectors reveals that Nfatc1 promotes the expression of twist1b-a well-known regulator of epithelial-to-mesenchymal transition. CONCLUSIONS: Our study sheds light on the function of Nfatc1 in zebrafish cardiac valve development and reveals its role in VIC formation. It also further establishes the zebrafish as a powerful model to carry out longitudinal studies of valve formation and function.


Asunto(s)
Válvulas Cardíacas/citología , Válvulas Cardíacas/crecimiento & desarrollo , Factores de Transcripción NFATC/fisiología , Organogénesis/fisiología , Animales , Animales Modificados Genéticamente , Movimiento Celular/fisiología , Femenino , Masculino , Ratones , Distribución Aleatoria , Pez Cebra
4.
Dev Biol ; 458(2): 228-236, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31697936

RESUMEN

Significant efforts have advanced our understanding of foregut-derived organ development; however, little is known about the molecular mechanisms that underlie the formation of the hepatopancreatic ductal (HPD) system. Here, we report a role for the homeodomain transcription factor Hhex in directing HPD progenitor specification in zebrafish. Loss of Hhex function results in impaired HPD system formation. We found that Hhex specifies a distinct population of HPD progenitors that gives rise to the cystic duct, common bile duct, and extra-pancreatic duct. Since hhex is not uniquely expressed in the HPD region but is also expressed in endothelial cells and the yolk syncytial layer (YSL), we tested the role of blood vessels as well as the YSL in HPD formation. We found that blood vessels are required for HPD patterning, but not for HPD progenitor specification. In addition, we found that Hhex is required in both the endoderm and the YSL for HPD development. Our results shed light on the mechanisms directing endodermal progenitors towards the HPD fate and emphasize the tissue specific requirement of Hhex during development.


Asunto(s)
Hepatopáncreas/embriología , Hepatopáncreas/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Tipificación del Cuerpo/fisiología , Sistema Digestivo/metabolismo , Embrión no Mamífero/metabolismo , Endodermo/metabolismo , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Hepatopáncreas/metabolismo , Proteínas de Homeodominio/genética , Proteínas Represoras/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
5.
Nat Commun ; 9(1): 2704, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-30006544

RESUMEN

Formation of the lymphatic system requires the coordinated expression of several key regulators: vascular endothelial growth factor C (VEGFC), its receptor FLT4, and a key transcriptional effector, PROX1. Yet, how expression of these signaling components is regulated remains poorly understood. Here, using a combination of genetic and molecular approaches, we identify the transcription factor hematopoietically expressed homeobox (HHEX) as an upstream regulator of VEGFC, FLT4, and PROX1 during angiogenic sprouting and lymphatic formation in vertebrates. By analyzing zebrafish mutants, we found that hhex is necessary for sprouting angiogenesis from the posterior cardinal vein, a process required for lymphangiogenesis. Furthermore, studies of mammalian HHEX using tissue-specific genetic deletions in mouse and knockdowns in cultured human endothelial cells reveal its highly conserved function during vascular and lymphatic development. Our findings that HHEX is essential for the regulation of the VEGFC/FLT4/PROX1 axis provide insights into the molecular regulation of lymphangiogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Linfangiogénesis/genética , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Vasos Sanguíneos/citología , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Línea Celular , Embrión de Mamíferos , Embrión no Mamífero , Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Ratones , Neovascularización Fisiológica/genética , Proteínas Represoras/deficiencia , Transducción de Señal , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(40): 11237-11242, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647901

RESUMEN

Zebrafish have a remarkable capacity to regenerate their heart. Efficient replenishment of lost tissues requires the activation of different cell types including the epicardium and endocardium. A complex set of processes is subsequently needed to support cardiomyocyte repopulation. Previous studies have identified important determinants of heart regeneration; however, to date, how revascularization of the damaged area happens remains unknown. Here, we show that angiogenic sprouting into the injured area starts as early as 15 h after injury. To analyze the role of vegfaa in heart regeneration, we used vegfaa mutants rescued to adulthood by vegfaa mRNA injections at the one-cell stage. Surprisingly, vegfaa mutants develop coronaries and revascularize after injury. As a possible explanation for these observations, we find that vegfaa mutant hearts up-regulate the expression of potentially compensating genes. Therefore, to overcome the lack of a revascularization phenotype in vegfaa mutants, we generated fish expressing inducible dominant negative Vegfaa. These fish displayed minimal revascularization of the damaged area. In the absence of fast angiogenic revascularization, cardiomyocyte proliferation did not occur, and the heart failed to regenerate, retaining a fibrotic scar. Hence, our data show that a fast endothelial invasion allows efficient revascularization of the injured area, which is necessary to support replenishment of new tissue and achieve efficient heart regeneration. These findings revisit the model where neovascularization is considered to happen concomitant with the formation of new muscle. Our work also paves the way for future studies designed to understand the molecular mechanisms that regulate fast revascularization.


Asunto(s)
Corazón/fisiopatología , Revascularización Miocárdica , Regeneración/fisiología , Pez Cebra/fisiología , Animales , Biomarcadores/metabolismo , Proliferación Celular , Supervivencia Celular , Vasos Coronarios/patología , Regulación del Desarrollo de la Expresión Génica , Respuesta al Choque Térmico , Mutación/genética , Miocitos Cardíacos/metabolismo , Neovascularización Fisiológica , Pericardio/patología , Conducto Torácico/patología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Blood ; 128(19): 2359-2366, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27557946

RESUMEN

The mechanisms that allow cells to bypass anti-vascular endothelial growth factor A (VEGFA) therapy remain poorly understood. Here we use zebrafish to investigate this question and first show that vegfaa mutants display a severe vascular phenotype that can surprisingly be rescued to viability by vegfaa messenger RNA injections at the 1-cell stage. Using vegfaa mutants as an in vivo test tube, we found that zebrafish Vegfbb, Vegfd, and Pgfb can also rescue these animals to viability. Taking advantage of a new vegfr1 tyrosine kinase-deficient mutant, we determined that Pgfb rescues vegfaa mutants via Vegfr1. Altogether, these data reveal potential resistance routes against current anti-VEGFA therapies. In order to circumvent this resistance, we engineered and validated new dominant negative Vegfa molecules that by trapping Vegf family members can block vascular development. Thus, our results show that Vegfbb, Vegfd, and Pgfb can sustain vascular development in the absence of VegfA, and our newly engineered Vegf molecules expand the toolbox for basic research and antiangiogenic therapy.


Asunto(s)
Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Envejecimiento/patología , Animales , Arterias/crecimiento & desarrollo , Arterias/patología , Diferenciación Celular , Genes Dominantes , Ligandos , Mutación/genética , Neovascularización Fisiológica , Ingeniería de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética
8.
Development ; 143(12): 2217-27, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27302398

RESUMEN

During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/ß-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process.


Asunto(s)
Válvulas Cardíacas/citología , Válvulas Cardíacas/embriología , Imagenología Tridimensional , Animales , Movimiento Celular , Circulación Coronaria , Endocardio/citología , Endocardio/embriología , Regulación del Desarrollo de la Expresión Génica , Atrios Cardíacos/citología , Atrios Cardíacos/embriología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Mutación/genética , Contracción Miocárdica , Organogénesis/genética , Receptores Notch/metabolismo , Vía de Señalización Wnt , Pez Cebra
9.
Vasc Cell ; 6(1): 9, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24690185

RESUMEN

BACKGROUND: Dicer is an RNase III enzyme that cleaves double stranded RNA and generates functional interfering RNAs that act as important regulators of gene and protein expression. Dicer plays an essential role during mouse development because the deletion of the dicer gene leads to embryonic death. In addition, dicer-dependent interfering RNAs regulate postnatal angiogenesis. However, the role of dicer is not yet fully elucidated during vascular development. METHODS: In order to explore the functional roles of the RNA interference in vascular biology, we developed a new constitutive Cre/loxP-mediated inactivation of dicer in tie2 expressing cells. RESULTS: We show that cell-specific inactivation of dicer in Tie2 expressing cells does not perturb early blood vessel development and patterning. Tie2-Cre; dicerfl/fl mutant embryos do not show any blood vascular defects until embryonic day (E)12.5, a time at which hemorrhages and edema appear. Then, midgestational lethality occurs at E14.5 in mutant embryos. The developing lymphatic vessels of dicer-mutant embryos are filled with circulating red blood cells, revealing an impaired separation of blood and lymphatic vasculature. CONCLUSION: Thus, these results show that RNA interference perturbs neither vasculogenesis and developmental angiogenesis, nor lymphatic specification from venous endothelial cells but actually provides evidence for an epigenetic control of separation of blood and lymphatic vasculature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...