Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(13): 3627-3638, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38530393

RESUMEN

Metalloporphyrins with open d-shell ions can drive biochemical energy cycles. However, their utilization in photoconversion is hampered by rapid deactivation. Mapping the relaxation pathways is essential for elaborating strategies that can favorably alter the charge dynamics through chemical design and photoexcitation conditions. Here, we combine transient optical absorption spectroscopy and transient X-ray emission spectroscopy with femtosecond resolution to probe directly the coupled electronic and spin dynamics within a photoexcited nickel porphyrin in solution. Measurements and calculations reveal that a state with charge-transfer character mediates the formation of the thermalized excited state, thereby advancing the description of the photocycle for this important representative molecule. More generally, establishing that intramolecular charge-transfer steps play a role in the photoinduced dynamics of metalloporphyrins with open d-shell sets a conceptual ground for their development as building blocks capable of boosting nonadiabatic photoconversion in functional architectures through "hot" charge transfer down to the attosecond time scale.

2.
Struct Dyn ; 10(6): 064501, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37941994

RESUMEN

The evolution of charge carriers in photoexcited room temperature ZnO nanoparticles in solution is investigated using ultrafast ultraviolet photoluminescence spectroscopy, ultrafast Zn K-edge absorption spectroscopy, and ab initio molecular dynamics (MD) simulations. The photoluminescence is excited at 4.66 eV, well above the band edge, and shows that electron cooling in the conduction band and exciton formation occur in <500 fs, in excellent agreement with theoretical predictions. The x-ray absorption measurements, obtained upon excitation close to the band edge at 3.49 eV, are sensitive to the migration and trapping of holes. They reveal that the 2 ps transient largely reproduces the previously reported transient obtained at 100 ps time delay in synchrotron studies. In addition, the x-ray absorption signal is found to rise in ∼1.4 ps, which we attribute to the diffusion of holes through the lattice prior to their trapping at singly charged oxygen vacancies. Indeed, the MD simulations show that impulsive trapping of holes induces an ultrafast expansion of the cage of Zn atoms in <200 fs, followed by an oscillatory response at a frequency of ∼100 cm-1, which corresponds to a phonon mode of the system involving the Zn sub-lattice.

3.
Adv Sci (Weinh) ; 10(21): e2206880, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37196414

RESUMEN

Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2 ]2+ (terpy = 2,2':6',2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.

5.
Nat Commun ; 14(1): 2495, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120432

RESUMEN

X-ray free-electron laser sources enable time-resolved X-ray studies with unmatched temporal resolution. To fully exploit ultrashort X-ray pulses, timing tools are essential. However, new high repetition rate X-ray facilities present challenges for currently used timing tool schemes. Here we address this issue by demonstrating a sensitive timing tool scheme to enhance experimental time resolution in pump-probe experiments at very high pulse repetition rates. Our method employs a self-referenced detection scheme using a time-sheared chirped optical pulse traversing an X-ray stimulated diamond plate. By formulating an effective medium theory, we confirm subtle refractive index changes, induced by sub-milli-Joule intense X-ray pulses, that are measured in our experiment. The system utilizes a Common-Path-Interferometer to detect X-ray-induced phase shifts of the optical probe pulse transmitted through the diamond sample. Owing to the thermal stability of diamond, our approach is well-suited for MHz pulse repetition rates in superconducting linear accelerator-based free-electron lasers.

6.
J Phys Chem Lett ; 14(9): 2425-2432, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36862109

RESUMEN

We report femtosecond Fe K-edge absorption (XAS) and nonresonant X-ray emission (XES) spectra of ferric cytochrome C (Cyt c) upon excitation of the haem (>300 nm) or mixed excitation of the haem and tryptophan (<300 nm). The XAS and XES transients obtained in both excitation energy ranges show no evidence for electron transfer processes between photoexcited tryptophan (Trp) and the haem, but rather an ultrafast energy transfer, in agreement with previous ultrafast optical fluorescence and transient absorption studies. The reported (J. Phys. Chem. B 2011, 115 (46), 13723-13730) decay times of Trp fluorescence in ferrous (∼350 fs) and ferric (∼700 fs) Cyt c are among the shortest ever reported for Trp in a protein. The observed time scales cannot be rationalized in terms of Förster or Dexter energy transfer mechanisms and call for a more thorough theoretical investigation.


Asunto(s)
Citocromos c , Hemo , Hemo/metabolismo , Triptófano , Transporte de Electrón , Transferencia de Energía , Hierro
7.
Chem Sci ; 14(10): 2572-2584, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36908966

RESUMEN

Photochemical reactions in solution are governed by a complex interplay between transient intramolecular electronic and nuclear structural changes and accompanying solvent rearrangements. State-of-the-art time-resolved X-ray solution scattering has emerged in the last decade as a powerful technique to observe solute and solvent motions in real time. However, disentangling solute and solvent dynamics and how they mutually influence each other remains challenging. Here, we simultaneously measure femtosecond X-ray emission and scattering to track both the intramolecular and solvation structural dynamics following photoexcitation of a solvated copper photosensitizer. Quantitative analysis assisted by molecular dynamics simulations reveals a two-step ligand flattening strongly coupled to the solvent reorganization, which conventional optical methods could not discern. First, a ballistic flattening triggers coherent motions of surrounding acetonitrile molecules. In turn, the approach of acetonitrile molecules to the copper atom mediates the decay of intramolecular coherent vibrations and induces a further ligand flattening. These direct structural insights reveal that photoinduced solute and solvent motions can be intimately intertwined, explaining how the key initial steps of light harvesting are affected by the solvent on the atomic time and length scale. Ultimately, this work takes a step forward in understanding the microscopic mechanisms of the bidirectional influence between transient solvent reorganization and photoinduced solute structural dynamics.

8.
J Chem Phys ; 157(22): 224201, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36546808

RESUMEN

We present a sub-picosecond resolved investigation of the structural solvent reorganization and geminate recombination dynamics following 400 nm two-photon excitation and photodetachment of a valence p electron from the aqueous atomic solute, I-(aq). The measurements utilized time-resolved X-ray Absorption Near Edge Structure (TR-XANES) spectroscopy and X-ray Solution Scattering (TR-XSS) at the Linac Coherent Light Source x-ray free electron laser in a laser pump/x-ray probe experiment. The XANES measurements around the L1-edge of the generated nascent iodine atoms (I0) yield an average electron ejection distance from the iodine parent of 7.4 ± 1.5 Å with an excitation yield of about 1/3 of the 0.1M NaI aqueous solution. The kinetic traces of the XANES measurement are in agreement with a purely diffusion-driven geminate iodine-electron recombination model without the need for a long-lived (I0:e-) contact pair. Nonequilibrium classical molecular dynamics simulations indicate a delayed response of the caging H2O solvent shell and this is supported by the structural analysis of the XSS data: We identify a two-step process exhibiting a 0.1 ps delayed solvent shell reorganization time within the tight H-bond network and a 0.3 ps time constant for the mean iodine-oxygen distance changes. The results indicate that most of the reorganization can be explained classically by a transition from a hydrophilic cavity with a well-ordered first solvation shell (hydrogens pointing toward I-) to an expanded cavity around I0 with a more random orientation of the H2O molecules in a broadened first solvation shell.

9.
Chemistry ; 27(38): 9905-9918, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-33884671

RESUMEN

A new base metal iron-cobalt dyad has been obtained by connection between a heteroleptic tetra-NHC iron(II) photosensitizer combining a 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine with 2,6-bis(3-methyl-imidazol-2-ylidene)-4,4'-bipyridine ligand, and a cobaloxime catalyst. This novel iron(II)-cobalt(III) assembly has been extensively characterized by ground- and excited-state methods like X-ray crystallography, X-ray absorption spectroscopy, (spectro-)electrochemistry, and steady-state and time-resolved optical absorption spectroscopy, with a particular focus on the stability of the molecular assembly in solution and determination of the excited-state landscape. NMR and UV/Vis spectroscopy reveal dissociation of the dyad in acetonitrile at concentrations below 1 mM and high photostability. Transient absorption spectroscopy after excitation into the metal-to-ligand charge transfer absorption band suggests a relaxation cascade originating from hot singlet and triplet MLCT states, leading to the population of the 3 MLCT state that exhibits the longest lifetime. Finally, decay into the ground state involves a 3 MC state. Attachment of cobaloxime to the iron photosensitizer increases the 3 MLCT lifetime at the iron centre. Together with the directing effect of the linker, this potentially makes the dyad more active in photocatalytic proton reduction experiments than the analogous two-component system, consisting of the iron photosensitizer and Co(dmgH)2 (py)Cl. This work thus sheds new light on the functionality of base metal dyads, which are important for more efficient and sustainable future proton reduction systems.

10.
Chem Commun (Camb) ; 57(34): 4142-4145, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33908495

RESUMEN

Photo-induced oxidation-enhancement in biomimetic bridged Ru(ii)-Mo(vi) photo-catalyst is unexpectedly photo-activated in ps timescales. One-photon absorption generates an excited state where both photo-oxidized and photo-reduced catalytic centres are activated simultaneously and independently.

11.
Chemphyschem ; 22(7): 693-700, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33410580

RESUMEN

Time-resolved X-ray absorption spectroscopy has been utilized to monitor the bimolecular electron transfer in a photocatalytic water splitting system. This has been possible by uniting the local probe and element specific character of X-ray transitions with insights from high-level ab initio calculations. The specific target has been a heteroleptic [IrIII (ppy)2 (bpy)]+ photosensitizer, in combination with triethylamine as a sacrificial reductant and Fe3(CO)12 as a water reduction catalyst. The relevant molecular transitions have been characterized via high-resolution Ir L-edge X-ray absorption spectroscopy on the picosecond time scale and restricted active space self-consistent field calculations. The presented methods and results will enhance our understanding of functionally relevant bimolecular electron transfer reactions and thus will pave the road to rational optimization of photocatalytic performance.

12.
Proc Natl Acad Sci U S A ; 117(36): 21914-21920, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848065

RESUMEN

The structure-function relationship is at the heart of biology, and major protein deformations are correlated to specific functions. For ferrous heme proteins, doming is associated with the respiratory function in hemoglobin and myoglobins. Cytochrome c (Cyt c) has evolved to become an important electron-transfer protein in humans. In its ferrous form, it undergoes ligand release and doming upon photoexcitation, but its ferric form does not release the distal ligand, while the return to the ground state has been attributed to thermal relaxation. Here, by combining femtosecond Fe Kα and Kß X-ray emission spectroscopy (XES) with Fe K-edge X-ray absorption near-edge structure (XANES), we demonstrate that the photocycle of ferric Cyt c is entirely due to a cascade among excited spin states of the iron ion, causing the ferric heme to undergo doming, which we identify. We also argue that this pattern is common to a wide diversity of ferric heme proteins, raising the question of the biological relevance of doming in such proteins.


Asunto(s)
Citocromos c/química , Citocromos c/metabolismo , Humanos , Hierro/química , Hierro/metabolismo , Cinética , Dominios Proteicos , Espectrometría por Rayos X , Espectroscopía de Absorción de Rayos X
13.
Nat Commun ; 11(1): 4145, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811825

RESUMEN

In haemoglobin the change from the low-spin (LS) hexacoordinated haem to the high spin (HS, S = 2) pentacoordinated domed deoxy-myoglobin (deoxyMb) form upon ligand detachment from the haem and the reverse process upon ligand binding are what ultimately drives the respiratory function. Here we probe them in the case of Myoglobin-NO (MbNO) using element- and spin-sensitive femtosecond Fe Kα and Kß X-ray emission spectroscopy at an X-ray free-electron laser (FEL). We find that the change from the LS (S = 1/2) MbNO to the HS haem occurs in ~800 fs, and that it proceeds via an intermediate (S = 1) spin state. We also show that upon NO recombination, the return to the planar MbNO ground state is an electronic relaxation from HS to LS taking place in ~30 ps. Thus, the entire ligand dissociation-recombination cycle in MbNO is a spin cross-over followed by a reverse spin cross-over process.


Asunto(s)
Hemo/química , Hemoglobinas/química , Mioglobina/química , Hemo/metabolismo , Hemoglobinas/metabolismo , Cinética , Ligandos , Modelos Moleculares , Mioglobina/metabolismo , Espectrometría por Rayos X
14.
J Chem Phys ; 152(21): 214301, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32505143

RESUMEN

Oligonuclear complexes of d4-d7 transition metal ion centers that undergo spin-switching have long been developed for their practical role in molecular electronics. Recently, they also have appeared as promising photochemical reactants demonstrating improved stability. However, the lack of knowledge about their photophysical properties in the solution phase compared to mononuclear complexes is currently hampering their inclusion into advanced light-driven reactions. In the present study, the ultrafast photoinduced dynamics in a solvated [2 × 2] iron(II) metallogrid complex are characterized by combining measurements with transient optical-infrared absorption and x-ray emission spectroscopy on the femtosecond time scale. The analysis is supported by density functional theory calculations. The photocycle can be described in terms of intra-site transitions, where the FeII centers in the low-spin state are independently photoexcited. The Franck-Condon state decays via the formation of a vibrationally hot high-spin (HS) state that displays coherent behavior within a few picoseconds and thermalizes within tens of picoseconds to yield a metastable HS state living for several hundreds of nanoseconds. Systematic comparison with the closely related mononuclear complex [Fe(terpy)2]2+ reveals that nuclearity has a profound impact on the photoinduced dynamics. More generally, this work provides guidelines for expanding the integration of oligonuclear complexes into new photoconversion schemes that may be triggered by ultrafast spin-switching.

16.
Nat Commun ; 11(1): 1530, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251278

RESUMEN

One of the most basic molecular photophysical processes is that of spin transitions and intersystem crossing between excited states surfaces. The change in spin states affects the spatial distribution of electron density through the spin orbit coupling interaction. The subsequent nuclear reorganization reports on the full extent of the spin induced change in electron distribution, which can be treated similarly to intramolecular charge transfer with effective reaction coordinates depicting the spin transition. Here, single-crystal [FeII(bpy)3](PF6)2, a prototypical system for spin crossover (SCO) dynamics, is studied using ultrafast electron diffraction in the single-photon excitation regime. The photoinduced SCO dynamics are resolved, revealing two distinct processes with a (450 ± 20)-fs fast component and a (2.4 ± 0.4)-ps slow component. Using principal component analysis, we uncover the key structural modes, ultrafast Fe-N bond elongations coupled with ligand motions, that define the effective reaction coordinate to fully capture the relevant molecular reorganization.

17.
J Phys Chem Lett ; 11(6): 2133-2141, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32069410

RESUMEN

An atomistic understanding of the photoinduced spin-state switching (PSS) within polynuclear systems of d4-d7 transition metal ion complexes is required for their rational integration into light-driven reactions of chemical and biological interest. However, in contrast to mononuclear systems, the multidimensional dynamics of the PSS in solvated molecular arrays have not yet been elucidated due to the expected complications associated with the connectivity between the metal centers and the strong interactions with the surroundings. In this work, the PSS in a solvated triiron(II) metallogrid complex is characterized using transient optical absorption and X-ray emission spectroscopies on the femtosecond time scale. The complementary measurements reveal the photoinduced creation of energy-rich (hot) and long-lived quintet states, whose dynamics differ critically from their mononuclear congeners. This finding opens major prospects for developing novel schemes in solution-phase spin chemistry that are driven by the dynamic PSS process in compact oligometallic arrays.

18.
J Chem Phys ; 151(14): 144306, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615248

RESUMEN

Ligand substitution reactions are common in solvated transition metal complexes, and harnessing them through initiation with light promises interesting practical applications, driving interest in new means of probing their mechanisms. Using a combination of time-resolved x-ray absorption spectroscopy and hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations and x-ray absorption near-edge spectroscopy calculations, we elucidate the mechanism of photoaquation in the model system iron(ii) hexacyanide, where UV excitation results in the exchange of a CN- ligand with a water molecule from the solvent. We take advantage of the high flux and stability of synchrotron x-rays to capture high precision x-ray absorption spectra that allow us to overcome the usual limitation of the relatively long x-ray pulses and extract the spectrum of the short-lived intermediate pentacoordinated species. Additionally, we determine its lifetime to be 19 (±5) ps. The QM/MM simulations support our experimental findings and explain the ∼20 ps time scale for aquation as involving interconversion between the square pyramidal (SP) and trigonal bipyramidal pentacoordinated geometries, with aquation being only active in the SP configuration.

19.
J Synchrotron Radiat ; 26(Pt 5): 1432-1447, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490131

RESUMEN

The European X-ray Free-Electron Laser (EuXFEL) delivers extremely intense (>1012 photons pulse-1 and up to 27000 pulses s-1), ultrashort (<100 fs) and transversely coherent X-ray radiation, at a repetition rate of up to 4.5 MHz. Its unique X-ray beam parameters enable novel and groundbreaking experiments in ultrafast photochemistry and material sciences at the Femtosecond X-ray Experiments (FXE) scientific instrument. This paper provides an overview of the currently implemented experimental baseline instrumentation and its performance during the commissioning phase, and a preview of planned improvements. FXE's versatile instrumentation combines the simultaneous application of forward X-ray scattering and X-ray spectroscopy techniques with femtosecond time resolution. These methods will eventually permit exploitation of wide-angle X-ray scattering studies and X-ray emission spectroscopy, along with X-ray absorption spectroscopy, including resonant inelastic X-ray scattering and X-ray Raman scattering. A suite of ultrafast optical lasers throughout the UV-visible and near-IR ranges (extending up to mid-IR in the near future) with pulse length down to 15 fs, synchronized to the X-ray source, serve to initiate dynamic changes in the sample. Time-delayed hard X-ray pulses in the 5-20 keV range are used to probe the ensuing dynamic processes using the suite of X-ray probe tools. FXE is equipped with a primary monochromator, a primary and secondary single-shot spectrometer, and a timing tool to correct the residual timing jitter between laser and X-ray pulses.


Asunto(s)
Rayos Láser , Fotoquímica/instrumentación , Espectrometría por Rayos X/instrumentación , Calibración , Diseño de Equipo , Fotones , Dispersión de Radiación , Rayos X
20.
Nat Commun ; 10(1): 3606, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31399565

RESUMEN

Disentangling the strong interplay between electronic and nuclear degrees of freedom is essential to achieve a full understanding of excited state processes during ultrafast nonadiabatic chemical reactions. However, the complexity of multi-dimensional potential energy surfaces means that this remains challenging. The energy flow during vibrational and electronic relaxation processes can be explored with structural sensitivity by probing a nuclear wavepacket using femtosecond time-resolved X-ray Absorption Near Edge Structure (TR-XANES). However, it remains unknown to what level of detail vibrational motions are observable in this X-ray technique. Herein we track the wavepacket dynamics of a prototypical [Cu(2,9-dimethyl-1,10-phenanthroline)2]+ complex using TR-XANES. We demonstrate that sensitivity to individual wavepacket components can be modulated by the probe energy and that the bond length change associated with molecular breathing mode can be tracked with a sub-Angstrom resolution beyond optical-domain observables. Importantly, our results reveal how state-of-the-art TR-XANES provides deeper insights of ultrafast nonadiabatic chemical reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...