Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Microbiol Rep ; 16(2): e13247, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644048

RESUMEN

The cereal leaf beetle (CLB, Oulema melanopus) is one of the major cereal pests. The effect of insecticides belonging to different chemical classes, with different mechanisms of action and the active substances' concentrations on the CLB bacterial microbiome, was investigated. Targeted metagenomic analysis of the V3-V4 regions of the 16S ribosomal gene was used to determine the composition of the CLB bacterial microbiome. Each of the insecticides caused a decrease in the abundance of bacteria of the genus Pantoea, and an increase in the abundance of bacteria of the genus Stenotrophomonas, Acinetobacter, compared to untreated insects. After cypermethrin application, a decrease in the relative abundance of bacteria of the genus Pseudomonas was noted. The dominant bacterial genera in cypermethrin-treated larvae were Lactococcus, Pantoea, while in insects exposed to chlorpyrifos or flonicamid it was Pseudomonas. Insecticide-treated larvae were characterized, on average, by higher biodiversity and richness of bacterial genera, compared to untreated insects. The depletion of CLB-associated bacteria resulted in a decrease in larval survival, especially after cypermethrin and chlorpyrifos treatments. The use of a metagenome-based functional prediction approach revealed a higher predicted function of bacterial acetyl-CoA C-acetyltransferase in flonicamid and chlorpyrifos-treated larvae and tRNA dimethyltransferase in cypermethrin-treated insects than in untreated insects.


Asunto(s)
Bacterias , Escarabajos , Insecticidas , Larva , Animales , Insecticidas/farmacología , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Larva/microbiología , Larva/efectos de los fármacos , Escarabajos/microbiología , Escarabajos/efectos de los fármacos , ARN Ribosómico 16S/genética , Microbiota/efectos de los fármacos , Metagenómica , Piretrinas/farmacología , Cloropirifos , Pantoea/genética , Pantoea/efectos de los fármacos
2.
Front Plant Sci ; 15: 1352318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576793

RESUMEN

Introduction: Bacteria of genus Pectobacterium, encompassing economically significant pathogens affecting various plants, includes the species P. betavasculorum, initially associated with beetroot infection. However, its host range is much broader. It causes diseases of sunflower, potato, tomato, carrots, sweet potato, radish, squash, cucumber, and chrysanthemum. To explain this phenomenon, a comprehensive pathogenomic and phenomic characterisation of P. betavasculorum species was performed. Methods: Genomes of P. betavasculorum strains isolated from potato, sunflower, and artichoke were sequenced and compared with those from sugar beet isolates. Metabolic profiling and pathogenomic analyses were conducted to assess virulence determinants and adaptation potential. Pathogenicity assays were performed on potato tubers and chicory leaves to confirm in silico predictions of disease symptoms. Phenotypic assays were also conducted to assess the strains ability to synthesise homoserine lactones and siderophores. Results: The genome size ranged from 4.675 to 4.931 kbp, and GC % was between 51.0% and 51.2%. The pangenome of P. betavasculorum is open and comprises, on average, 4,220 gene families. Of these, 83% of genes are the core genome, and 2% of the entire pangenome are unique genes. Strains isolated from sugar beet have a smaller pangenome size and a higher number of unique genes than those from other plants. Interestingly, genomes of strains from artichoke and sunflower share 391 common CDS that are not present in the genomes of other strains from sugar beet or potato. Those strains have only one unique gene. All strains could use numerous sugars as building materials and energy sources and possessed a high repertoire of virulence determinants in the genomes. P. betavasculorum strains were able to cause disease symptoms on potato tubers and chicory leaves. They were also able to synthesise homoserine lactones and siderophores. Discussion: The findings underscore the adaptability of P. betavasculorum to diverse hosts and environments. Strains adapted to plants with high sugar content in tissues have a different composition of fatty acids in membranes and a different mechanism of replenishing nitrogen in case of deficiency of this compound than strains derived from other plant species. Extensive phenomics and genomic analyses performed in this study have shown that P. betavasculorum species is an agronomically relevant pathogen.

3.
Front Microbiol ; 15: 1356206, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591037

RESUMEN

P1 is a model, temperate bacteriophage of the 94 kb genome. It can lysogenize representatives of the Enterobacterales order. In lysogens, it is maintained as a plasmid. We tested P1 interactions with the biocontrol P. agglomerans L15 strain to explore the utility of P1 in P. agglomerans genome engineering. A P1 derivative carrying the Tn9 (cmR) transposon could transfer a plasmid from Escherichia coli to the L15 cells. The L15 cells infected with this derivative formed chloramphenicol-resistant colonies. They could grow in a liquid medium with chloramphenicol after adaptation and did not contain prophage P1 but the chromosomally inserted cmR marker of P1 Tn9 (cat). The insertions were accompanied by various rearrangements upstream of the Tn9 cat gene promoter and the loss of IS1 (IS1L) from the corresponding region. Sequence analysis of the L15 strain genome revealed a chromosome and three plasmids of 0.58, 0.18, and 0.07 Mb. The largest and the smallest plasmid appeared to encode partition and replication incompatibility determinants similar to those of prophage P1, respectively. In the L15 derivatives cured of the largest plasmid, P1 with Tn9 could not replace the smallest plasmid even if selected. However, it could replace the smallest and the largest plasmid of L15 if its Tn9 IS1L sequence driving the Tn9 mobility was inactivated or if it was enriched with an immobile kanamycin resistance marker. Moreover, it could develop lytically in the L15 derivatives cured of both these plasmids. Clearly, under conditions of selection for P1, the mobility of the P1 selective marker determines whether or not the incoming P1 can outcompete the incompatible L15 resident plasmids. Our results demonstrate that P. agglomerans can serve as a host for bacteriophage P1 and can be engineered with the help of this phage. They also provide an example of how antibiotics can modify the outcome of horizontal gene transfer in natural environments. Numerous plasmids of Pantoea strains appear to contain determinants of replication or partition incompatibility with P1. Therefore, P1 with an immobile selective marker may be a tool of choice in curing these strains from the respective plasmids to facilitate their functional analysis.

4.
Appl Microbiol Biotechnol ; 108(1): 273, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520566

RESUMEN

An ever-growing body of literature evidences the protective role of polyhydroxyalkanoates (PHAs) against a plethora of mostly physical stressors in prokaryotic cells. To date, most of the research done involved bacterial strains isolated from habitats not considered to be life-challenging or extremely impacted by abiotic environmental factors. Polar region microorganisms experience a multitude of damaging factors in combinations rarely seen in other of Earth's environments. Therefore, the main objective of this investigation was to examine the role of PHAs in the adaptation of psychrophilic, Arctic-derived bacteria to stress conditions. Arctic PHA producers: Acidovorax sp. A1169 and Collimonas sp. A2191, were chosen and their genes involved in PHB metabolism were deactivated making them unable to accumulate PHAs (ΔphaC) or to utilize them (Δi-phaZ) as a carbon source. Varying stressors were applied to the wild-type and the prepared mutant strains and their survival rates were assessed based on CFU count. Wild-type strains with a functional PHA metabolism were best suited to survive the freeze-thaw cycle - a common feature of polar region habitats. However, the majority of stresses were best survived by the ΔphaC mutants, suggesting that the biochemical imbalance caused by the lack of PHAs induced a permanent cell-wide stress response thus causing them to better withstand the stressor application. Δi-phaZ mutants were superior in surviving UV irradiation, hinting that PHA granule presence in bacterial cells is beneficial despite it being biologically inaccessible. Obtained data suggests that the ability to metabolize PHA although important for survival, probably is not the most crucial mechanism in the stress-resistance strategies arsenal of cold-loving bacteria. KEY POINTS: • PHA metabolism helps psychrophiles survive freezing • PHA-lacking psychrophile mutants cope better with oxidative and heat stresses • PHA granule presence enhances the UV resistance of psychrophiles.


Asunto(s)
Polihidroxialcanoatos , Polihidroxialcanoatos/metabolismo , Bacterias/metabolismo , Carbono/metabolismo
5.
Front Plant Sci ; 15: 1323790, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38332771

RESUMEN

Introduction: Pectobacterium cacticida was identified as the causative agent of soft rot disease in cacti. Due to a high potential of spread in the face of global warming, the species poses a significant threat to horticultural and crop industry. The aim of this study was to revise the genomic, physiology and virulence characteristics of P. cacticida and update its phylogenetic position within the Pectobacterium genus. Methods: Whole genome sequences of five P. cacticida strains were obtained and subjected to comprehensive genomic and phylogenomic data analyses. We assessed the presence of virulence determinants and genes associated with host and environmental adaptation. Lipidomic analysis, as well as biochemical and phenotypic assays were performed to correlate genomic findings. Results: Phylogenomic analysis revealed that P. cacticida forms a distinct lineage within the Pectobacterium genus. Genomic evaluation uncovered 516 unique proteins, most of which were involved in cellular metabolism. They included genes of carbohydrate metabolism and transport and ABC transporters. The main differing characteristics from other Pectobacterium species were the lack of a myo-inositol degradation pathway and the presence of the malonate decarboxylase gene. All tested strains were pathogenic towards Opuntia spp., chicory, Chinese cabbage, and potato, but exhibited only mild pathogenicity towards carrot. Discussion: This study sheds light into the genomic characteristics of P. cacticida and highlights the pathogenic potential of the species. Unique genes found in P. cacticida genomes possibly enhance the species' survival and virulence. Based on phylogenomic analyses, we propose the reclassification of P. cacticida to a new genus, Alcorniella comb. nov.

6.
Microbiol Spectr ; 11(6): e0284423, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37982628

RESUMEN

IMPORTANCE: The genome of the strain Ligilactobacillus salivarius IBB3154 was sequenced, and transcriptome analysis was carried out at two different temperatures, allowing the determination of gene expression levels in response to environmental changes (temperature). Genes with higher expression at 42°C were identified. The use of a reporter gene (ß- glucuronidase) did not confirm the transcriptomic results; it was found that the promoters of the genes sasA1 and sasA2 were active in the presence of bile salts. This opens up new opportunities for the overexpression of genes of other bacterial species in Ligilactobacillus cells in the intestinal environment.


Asunto(s)
Ligilactobacillus salivarius , Genómica , Perfilación de la Expresión Génica , Intestinos/microbiología , Regiones Promotoras Genéticas
7.
Extremophiles ; 27(3): 25, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709928

RESUMEN

In recent years, extremophilic microorganisms have been employed as producers of the microbial bioplastics polyhydroxyalkanoates (PHA), which are of great biotechnological value. Nevertheless, cold-loving or psychrophilic (cryophilic) bacteria have been neglected in this regard. Here, we present an investigation of the Arctic glacier-derived PHA producer Acidovorax sp. A1169. Biolog GEN III Microplates were used as a screening tool to identify the most suitable carbon substrate concerning PHA synthesis. The strain produced homopolymer poly(3-hydroxybutyrate) (PHB) most efficiently (2 g/L) at a temperature of 15 °C when supplied with fructose or mannitol as carbon sources with a substantial decrease of PHB biosynthesis at 17.5 °C. The PHB yield did not increase considerably or even decreased when carbon source concentration exceeded 10 g/L hinting that the strain is oligotrophic in nature. The strain was also capable of introducing 3-hydroxyvalerate (3HV) into the polymer structure, which is known to improve PHA thermoplastic properties. This is the first investigation providing insight into a PHA biosynthesis process by means of a true psychrophile, offering guidelines on polar-region bacteria cultivation, production of PHA and also on the methodology for genetic engineering of psychrophiles.


Asunto(s)
Comamonadaceae , Polihidroxialcanoatos , Temperatura , Ingeniería Genética , Carbono , Comamonadaceae/genética
8.
Infect Dis Ther ; 12(8): 2017-2037, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37442903

RESUMEN

INTRODUCTION: The introduction of pneumococcal conjugate vaccines (PCV) into the national immunization programs (NIPs) has significantly reduced the number of pneumococcal infections. However, infections caused by isolates of non-vaccine serotypes (NVT) started spreading shortly thereafter and strains of NVT 19A have become the main cause of invasive pneumococcal disease burden worldwide. The aim of the study was to characterize serotype 19A invasive pneumococci of GPSC1/CC320 circulating in Poland before the introduction of PCV into the Polish NIP in 2017 and to compare them to isolates from other countries where PCVs were implemented much earlier than in Poland. METHODS: All the GPSC1/CC320 isolates were analyzed by serotyping, susceptibility testing, and whole genome sequencing followed by analyses of resistome, virulome, and core genome multilocus sequence typing (cgMLST), including comparative analysis with isolates with publicly accessible genomic sequences (PubMLST). RESULTS: During continuous surveillance the NRCBM collected 4237 invasive Streptococcus pneumoniae isolates between 1997 and 2016, including 200 isolates (4.7%) of serotype 19A. The most prevalent among 19A pneumococci were highly resistant representatives of Global Pneumococcal Sequence Cluster 1/Clonal Complex 320, GPSC1/CC320 (n = 97, 48.5%). Isolates of GPSC1/CC320 belonged to three sequence types (STs): ST320 (75.2%) ST4768 (23.7%), and ST15047 (1.0%), which all represented the 19A-III cps subtype and had complete loci for both PI-1 and PI-2 pili types. On the basis of the cgMLST analysis the majority of Polish GPSC1/CC320 isolates formed a group clearly distinct from pneumococci of this clone observed in other countries. CONCLUSION: Before introduction of PCV in the Polish NIP we noticed an unexpected increase of serotype 19A in invasive pneumococcal infections, with the most common being representatives of highly drug-resistant GPSC1/CC320 clone, rarely identified in Europe both before and even after PCV introduction.

9.
Genes (Basel) ; 14(7)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37510288

RESUMEN

Escherichia albertii is a new enteropathogen of humans and animals. The aim of the study was to assess the prevalence and pathogenicity of E. albertii strains isolated in northeastern Poland using epidemiological and genomic studies. In 2015-2018, a total of 1154 fecal samples from children and adults, 497 bird droppings, 212 food samples, 92 water samples, and 500 lactose-negative E. coli strains were tested. A total of 42 E. albertii strains were isolated. The PCR method was suitable for their rapid identification. In total, 33.3% of E. albertii isolates were resistant to one antibiotic, and 16.7% to two. Isolates were sensitive to cefepime, imipenem, levofloxacin, gentamicin, trimethoprim/sulfamethoxazole, and did not produce ESBL ß-lactamases. High genetic variability of E. albertii has been demonstrated. In the PFGE method, 90.5% of the strains had distinct pulsotypes. In MLST typing, 85.7% of strains were assigned distinct sequence types (STs), of which 64% were novel ST types. Cytolethal distending toxin (CDT) and Paa toxin genes were found in 100% of E. albertii isolates. Genes encoding toxins, IbeA, CdtB type 2, Tsh and Shiga (Stx2f), were found in 26.2%, 9.7%, 1.7%, and 0.4% of E. albertii isolates, respectively. The chromosome size of the tested strains ranged from 4,573,338 to 5,141,010 bp (average 4,784,003 bp), and at least one plasmid was present in all strains. The study contributes to a more accurate assessment of the genetic diversity of E. albertii and the potential threat it poses to public health.


Asunto(s)
Infecciones por Enterobacteriaceae , Genoma Bacteriano , Humanos , Animales , Polimorfismo de Longitud del Fragmento de Restricción , Biología Computacional , Filogenia
10.
BMC Genom Data ; 24(1): 19, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37032356

RESUMEN

BACKGROUND: Streptococcus pneumoniae (pneumococcus) represents an important human pathogen, responsible for respiratory and invasive infections in the community. The efficacy of polysaccharide conjugate vaccines formulated against pneumococci is reduced by the phenomenon of serotype replacement in population of this pathogen. The aim of the current study was to obtain and compare complete genomic sequences of two pneumococcal isolates, both belonging to ST320 but differing by the serotype. RESULTS: Here, we report genomic sequences of two isolates of important human pathogen, S. pneumoniae. Genomic sequencing resulted in complete sequences of chromosomes of both isolates, 2,069,241 bp and 2,103,144 bp in size, and confirmed the presence of cps loci specific for serotypes 19A and 19F. The comparative analysis of these genomes revealed several instances of recombination, which involved not only S. pneumoniae but also presumably other streptococci as donors. CONCLUSIONS: We report the complete genomic sequences of two S. pneumoniae isolates of ST320 and serotypes 19A and 19F. The detailed comparative analysis of these genomes revealed the history of several recombination events, clustered in the region including the cps locus.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Serogrupo , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas , Genómica
11.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36750176

RESUMEN

Recently, lichens came once more into the scientific spotlight due to their unique relations with prokaryotes. Several temperate region lichen species have been thoroughly explored in this regard yet, the information on Antarctic lichens and their associated bacteriobiomes is somewhat lacking. In this paper, we assessed the phylogenetic structure of the whole and active fractions of bacterial communities housed by Antarctic lichens growing in different environmental conditions by targeted 16S rRNA gene amplicon sequencing. Bacterial communities associated with lichens procured from a nitrogen enriched site were very distinct from the communities isolated from lichens of a nitrogen depleted site. The former were characterized by substantial contributions of Bacteroidetes phylum members and the elusive Armatimonadetes. At the nutrient-poor site the lichen-associated bacteriobiome structure was unique for each lichen species, with chlorolichens being occupied largely by Proteobacteria. Lichen species with a pronounced discrepancy in diversity between the whole and active fractions of their bacterial communities had the widest ecological amplitude, hinting that the nonactive part of the community is a reservoir of latent stress coping mechanisms. This is the first investigation to make use of targeted metatranscriptomics to infer the bacterial biodiversity in Antarctic lichens.


Asunto(s)
Líquenes , Líquenes/genética , ARN Ribosómico 16S/genética , ADN Complementario , Genes de ARNr , Filogenia , Bacterias/genética , Regiones Antárticas
12.
Microbiol Spectr ; 11(1): e0428922, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36622167

RESUMEN

In the majority of bacterial species, the tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target parS sequence(s), assists in the chromosome partitioning. ParB forms large nucleoprotein complexes at parS(s), located in the vicinity of origin of chromosomal replication (oriC), which after replication are subsequently positioned by ParA in cell poles. Remarkably, ParA and ParB participate not only in the chromosome segregation but through interactions with various cellular partners they are also involved in other cell cycle-related processes, in a species-specific manner. In this work, we characterized Pseudomonas aeruginosa ParB interactions with the cognate ParA, showing that the N-terminal motif of ParB is required for these interactions, and demonstrated that ParAB-parS-mediated rapid segregation of newly replicated ori domains prevented structural maintenance of chromosome (SMC)-mediated cohesion of sister chromosomes. Furthermore, using proteome-wide techniques, we have identified other ParB partners in P. aeruginosa, which encompass a number of proteins, including the nucleoid-associated proteins NdpA(PA3849) and NdpA2, MinE (PA3245) of Min system, and transcriptional regulators and various enzymes, e.g., CTP synthetase (PA3637). Among them are also NTPases PA4465, PA5028, PA3481, and FleN (PA1454), three of them displaying polar localization in bacterial cells. Overall, this work presents the spectrum of P. aeruginosa ParB partners and implicates the role of this protein in the cross-talk between chromosome segregation and other cellular processes. IMPORTANCE In Pseudomonas aeruginosa, a Gram-negative pathogen causing life-threatening infections in immunocompromised patients, the ParAB-parS system is involved in the precise separation of newly replicated bacterial chromosomes. In this work, we identified and characterized proteins interacting with partitioning protein ParB. We mapped the domain of interactions with its cognate ParA partner and showed that ParB-ParA interactions are crucial for the chromosome segregation and for proper SMC action on DNA. We also demonstrated ParB interactions with other DNA binding proteins, metabolic enzymes, and NTPases displaying polar localization in the cells. Overall, this study uncovers novel players cooperating with the chromosome partition system in P. aeruginosa, supporting its important regulatory role in the bacterial cell cycle.


Asunto(s)
Proteínas Bacterianas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Segregación Cromosómica , División Celular , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Cromosomas Bacterianos/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
13.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498910

RESUMEN

Pseudomonas aeruginosa, a human opportunistic pathogen, is a common cause of nosocomial infections. Its ability to survive under different conditions relies on a complex regulatory network engaging transcriptional regulators controlling metabolic pathways and capabilities to efficiently use the available resources. P. aeruginosa PA3973 encodes an uncharacterized TetR family transcriptional regulator. In this study, we applied a transcriptome profiling (RNA-seq), genome-wide identification of binding sites using ChIP-seq, as well as the phenotype analyses to unravel the biological role of PA3973. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3973 showed changes in the mRNA level of 648 genes. Concomitantly, ChIP-seq analysis identified more than 300 PA3973 binding sites in the P. aeruginosa genome. A 13 bp sequence motif was indicated as the binding site of PA3973. The PA3973 regulon encompasses the PA3972-PA3971 genes encoding a probable acyl-CoA dehydrogenase and a thioesterase. In vitro analysis showed PA3973 binding to PA3973p. Accordingly, the lack of PA3973 triggered increased expression of PA3972 and PA3971. The ∆PA3972-71 PAO1161 strain demonstrated impaired growth in the presence of stress-inducing agents hydroxylamine or hydroxyurea, thus suggesting the role of PA3972-71 in pathogen survival upon stress. Overall our results showed that TetR-type transcriptional regulator PA3973 has multiple binding sites in the P. aeruginosa genome and influences the expression of diverse genes, including PA3972-PA3971, encoding proteins with a proposed role in stress response.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulón/genética , Sitios de Unión
14.
PeerJ ; 10: e13056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368340

RESUMEN

Background: Next Generation Sequencing (NGS) techniques dominate today's landscape of genetics and genomics research. Though Illumina still dominates worldwide sequencing, Oxford Nanopore is one of the leading technologies currently being used by biologists, medics and geneticists across various applications. Oxford Nanopore is automated and relatively simple for conducting experiments, but generates gigabytes of raw data, to be processed by often ambiguous set of alternative bioinformatics command-line tools, and genomics frameworks which require a knowledge of bioinformatics to run. Results: We established an inter-collegiate collaboration across experimentalists and bioinformaticians in order to provide a novel bioinformatics tool, free for academics. This tool allows people without extensive bioinformatics knowledge to simply process their raw genome sequencing data. Currently, due to ICT resources' maintenance reasons, our server is only capable of handling small genomes (up to 15 Mb). In this paper, we introduce our tool, NanoForms: an intuitive and integrated web server for the processing and analysis of raw prokaryotic genome data, coming from Oxford Nanopore. NanoForms is freely available for academics at the following locations: http://nanoforms.tech (webserver) and https://github.com/czmilanna/nanoforms (GitHub source repository).


Asunto(s)
Nanoporos , Humanos , Análisis de Secuencia de ADN/métodos , Genómica/métodos , Computadores , Genoma Microbiano
15.
Microb Ecol ; 84(3): 808-820, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34661728

RESUMEN

Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. are the only Magnoliophyta to naturally colonize the Antarctic region. The reason for their sole presence in Antarctica is still debated as there is no definitive consensus on how only two unrelated flowering plants managed to establish breeding populations in this part of the world. In this study, we have explored and compared the rhizosphere and root-endosphere dwelling microbial community of C. quitensis and D. antarctica specimens sampled in maritime Antarctica from sites displaying contrasting edaphic characteristics. Bacterial phylogenetic diversity (high-throughput 16S rRNA gene fragment targeted sequencing) and microbial metabolic activity (Biolog EcoPlates) with a geochemical soil background were assessed. Gathered data showed that the microbiome of C. quitensis root system was mostly site-dependent, displaying different characteristics in each of the examined locations. This plant tolerated an active bacterial community only in severe conditions (salt stress and nutrient deprivation), while in other more favorable circumstances, it restricted microbial activity, with a possibility of microbivory-based nutrient acquisition. The microbial communities of D. antarctica showed a high degree of similarity between samples within a particular rhizocompartment. The grass' endosphere was significantly enriched in plant beneficial taxa of the family Rhizobiaceae, which displayed obligatory endophyte characteristics, suggesting that at least part of this community is transmitted vertically. Ultimately, the ecological success of C. quitensis and D. antarctica in Antarctica might be largely attributed to their associations and management of root-associated microbiota.


Asunto(s)
Caryophyllaceae , Regiones Antárticas , ARN Ribosómico 16S/genética , Filogenia , Caryophyllaceae/genética , Caryophyllaceae/microbiología , Plantas , Bacterias/genética
16.
Vet Comp Oncol ; 20(1): 256-264, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34554638

RESUMEN

The aim of this study was to determine molecular defects in mitochondrial DNA (mtDNA) with the use of large-scale genome analysis in malignant canine mammary gland tumours and indicate whether these changes were linked with the carcinogenesis process. With the use of the NGS technology, we sequenced 27 samples of mtDNA isolated from blood and tumours obtained from 13 dogs with mammary gland tumours. The total number of mutations and polymorphisms in the analysed mitochondrial genomes was 557. We identified 383 single nucleotide polymorphisms (SNP), 32 indels (or length polymorphisms), 4 mutations, 137 heteroplasmic positions and 1 indel mutation. The highest variability (132 changes) was observed in the variable number of tandem repeats (VNTR) region. The heteroplasmy rate in VNTR varied among individuals and even between two tumours in one organism. Our previous study resulted in determination of a probable CpG island in this region, thus it is not excluded that these changes might alter mtDNA methylation. Only the ATP8 gene was not affected by any polymorphisms or mutations, whereas the COX1 gene had the highest number of polymorphisms from all protein-coding genes. One change m.13594G>A was detected in a region spanning two genes: ND5 and ND6, from which a deleterious effect was observed for the ND5 protein. Molecular changes were frequently observed in the TΨC loop, which is thought to interact with ribosomal RNA.


Asunto(s)
Enfermedades de los Perros , Genoma Mitocondrial , Neoplasias Mamarias Animales , Animales , ADN Mitocondrial/genética , Enfermedades de los Perros/genética , Perros , Genoma Mitocondrial/genética , Neoplasias Mamarias Animales/genética , Polimorfismo de Nucleótido Simple/genética
17.
Diagnostics (Basel) ; 11(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34679513

RESUMEN

The introduction of effective vaccines against SARS-CoV-2 is expected to prevent COVID-19. However, sporadic cases of infection in vaccinated persons have been reported. We describe a case of a double-dose vaccinated woman with COVID-19. All stages of infection were observed, from no identification of virus, then the start of the infection, a high viral load, coming out of viraemia, and finally no detection of the virus. Despite the high viral load, the woman demonstrated mild COVID-19 symptoms, manifested only by a sore throat. The antibody results showed that she produced both post-infectious and post-vaccination immune responses. Phylogenetic analysis of the obtained viral genome sequence indicated that the virus belonged to the UK SARS-CoV-2 lineage B.1.1.7 (GR 501Y.V1; 20I/S:501Y.V1; Alpha variant).

18.
Biotechnol Biofuels ; 14(1): 125, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051845

RESUMEN

BACKGROUND: During the acetogenic step of anaerobic digestion, the products of acidogenesis are oxidized to substrates for methanogenesis: hydrogen, carbon dioxide and acetate. Acetogenesis and methanogenesis are highly interconnected processes due to the syntrophic associations between acetogenic bacteria and hydrogenotrophic methanogens, allowing the whole process to become thermodynamically favorable. The aim of this study is to determine the influence of the dominant acidic products on the metabolic pathways of methane formation and to find a core microbiome and substrate-specific species in a mixed biogas-producing system. RESULTS: Four methane-producing microbial communities were fed with artificial media having one dominant component, respectively, lactate, butyrate, propionate and acetate, for 896 days in 3.5-L Up-flow Anaerobic Sludge Blanket (UASB) bioreactors. All the microbial communities showed moderately different methane production and utilization of the substrates. Analyses of stable carbon isotope composition of the fermentation gas and the substrates showed differences in average values of δ13C(CH4) and δ13C(CO2) revealing that acetate and lactate strongly favored the acetotrophic pathway, while butyrate and propionate favored the hydrogenotrophic pathway of methane formation. Genome-centric metagenomic analysis recovered 234 Metagenome Assembled Genomes (MAGs), including 31 archaeal and 203 bacterial species, mostly unknown and uncultivable. MAGs accounted for 54%-67% of the entire microbial community (depending on the bioreactor) and evidenced that the microbiome is extremely complex in terms of the number of species. The core microbiome was composed of Methanothrix soehngenii (the most abundant), Methanoculleus sp., unknown Bacteroidales and Spirochaetaceae. Relative abundance analysis of all the samples revealed microbes having substrate preferences. Substrate-specific species were mostly unknown and not predominant in the microbial communities. CONCLUSIONS: In this experimental system, the dominant fermentation products subjected to methanogenesis moderately modified the final effect of bioreactor performance. At the molecular level, a different contribution of acetotrophic and hydrogenotrophic pathways for methane production, a very high level of new species recovered, and a moderate variability in microbial composition depending on substrate availability were evidenced. Propionate was not a factor ceasing methane production. All these findings are relevant because lactate, acetate, propionate and butyrate are the universal products of acidogenesis, regardless of feedstock.

19.
Microorganisms ; 9(4)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921507

RESUMEN

Poa annua (annual bluegrass) is one of the most ubiquitous grass species in the world. In isolated regions of maritime Antarctica, it has become an invasive organism threatening native tundra communities. In this study, we have explored and compared the rhizosphere and root-endosphere dwelling microbial community of P. annua specimens of maritime Antarctic and Central European origin in terms of bacterial phylogenetic diversity and microbial metabolic activity with a geochemical soil background. Our results show that the rhizospheric bacterial community was unique for each sampling site, yet the endosphere communities were similar to each other. However, key plant-associated bacterial taxa such as the Rhizobiaceae family were poorly represented in Antarctic samples, probably due to high salinity and heavy metal concentrations in the soil. Metabolic activity in the Antarctic material was considerably lower than in Central European samples. Antarctic root endosphere showed unusually high numbers of certain opportunistic bacterial groups, which proliferated due to low competition conditions. Thirteen bacterial families were recognized in this study to form a core microbiome of the P. annua root endosphere. The most numerous were the Flavobacteriaceae, suspected to be major contributors to the ecological success of annual bluegrass, especially in harsh, Antarctic conditions.

20.
BMC Genomics ; 22(1): 168, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750287

RESUMEN

BACKGROUND: Colourless microalgae of the Prototheca genus are the only known plants that have consistently been implicated in a range of clinically relevant opportunistic infections in both animals and humans. The Prototheca algae are emerging pathogens, whose incidence has increased importantly over the past two decades. Prototheca wickerhamii is a major human pathogen, responsible for at least 115 cases worldwide. Although the algae are receiving more attention nowadays, there is still a substantial knowledge gap regarding their biology, and pathogenicity in particular. Here we report, for the first time, the complete nuclear genome, organelle genomes, and transcriptome of the P. wickerhamii type strain ATCC 16529. RESULTS: The assembled genome size was of 16.7 Mbp, making it the smallest and most compact genome sequenced so far among the protothecans. Key features of the genome included a high overall GC content (64.5%), a high number (6081) and proportion (45.9%) of protein-coding genes, and a low repetitive sequence content (2.2%). The vast majority (90.6%) of the predicted genes were confirmed with the corresponding transcripts upon RNA-sequencing analysis. Most (93.2%) of the genes had their putative function assigned when searched against the InterProScan database. A fourth (23.3%) of the genes were annotated with an enzymatic activity possibly associated with the adaptation to the human host environment. The P. wickerhamii genome encoded a wide array of possible virulence factors, including those already identified in two model opportunistic fungal pathogens, i.e. Candida albicans and Trichophyton rubrum, and thought to be involved in invasion of the host or elicitation of the adaptive stress response. Approximately 6% of the P. wickerhamii genes matched a Pathogen-Host Interaction Database entry and had a previously experimentally proven role in the disease development. Furthermore, genes coding for proteins (e.g. ATPase, malate dehydrogenase) hitherto considered as potential virulence factors of Prototheca spp. were demonstrated in the P. wickerhamii genome. CONCLUSIONS: Overall, this study is the first to describe the genetic make-up of P. wickerhamii and discovers proteins possibly involved in the development of protothecosis.


Asunto(s)
Prototheca , Enfermedades Cutáneas Infecciosas , Animales , Arthrodermataceae , Genoma , Humanos , Prototheca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA