Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(13): 16040-16049, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38518111

RESUMEN

Transport layer and interface optimization is critical for improving the performance and stability of perovskite solar cells (PSCs) but is restricted by the conventional fabrication approach of sequential layer deposition. While the bottom transport layer is processed with minimum constraints, the narrow thermal and chemical stability window of the halide perovskite (HP) layer severely restricts the choice of top transport layer and its processing conditions. To overcome these limitations, we demonstrate lamination of HPs─where two transport layer-perovskite half-stacks are independently processed and diffusion-bonded at the HP-HP interface─as an alternative fabrication strategy that enables self-encapsulated solar cells. Power conversion efficiencies (PCE) of >21% are realized using cells that incorporate a novel transport layer combination along with dual-interface passivation via self-assembled monolayers, both of which are uniquely enabled by the lamination approach. This is the highest reported PCE for any laminated PSC encapsulated between glass substrates. We further show that this approach expands the processing window beyond traditional fabrication processes and is adaptable for different transport layer compositions. The laminated PSCs retained >75% of their initial PCE after 1000 h of 1-sun illumination at 40 °C in air using an all-inorganic transport layer configuration without additional encapsulation. Furthermore, a laminated 1 cm2 device maintained a Voc of 1.16 V. The scalable lamination strategy in this study enables the implementation of new transport layers and interfacial engineering approaches for improving performance and stability.

2.
Langmuir ; 38(38): 11641-11649, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36095297

RESUMEN

Highly transparent photocatalytic self-cleaning surfaces capable of harvesting near-visible (365-430 nm) photons were synthesized and characterized. This helps to address a current research gap in self-cleaning surfaces, in which photocatalytic coatings that exhibit activity at wavelengths longer than ultraviolet (UV) generally have poor optical transparency, because of broadband scattering and the attenuation of visible light. In this work, the wavelength-dependent photocatalytic activity of Pt-modified TiO2 (Pt-TiO2) particles was characterized, which exhibited activity for wavelengths up to 430 nm. Pt-TiO2 nanoparticles were embedded in a mesoporous SiO2 sol-gel matrix, forming a superhydrophilic surface that allowed for water adsorption and formation of reactive oxide species upon illumination, resulting in the removal of organic surface contaminants. These self-cleaning surfaces only interact strongly with near-visible light (∼365-430 nm), as characterized by photocatalytic self-cleaning tests. Broadband visible transparency was preserved by generating a morphology composed of small clusters of Pt-TiO2 surrounded by a matrix of SiO2, which limited diffuse visible light scattering and attenuation. The wavelength-dependent self-cleaning rate by the films was quantified using stearic acid degradation under both monochromatic and AM1.5G spectral illumination. By varying the film morphology, the average transmittance relative to bare glass can be tuned from ∼93%-99%, and the self-cleaning rate can be adjusted by more than an order of magnitude. Overall, the ability to utilize photocatalysts with tunable visible light activity, while maintaining broadband transparency, can enable the use of photocatalytic self-cleaning surfaces for applications where UV illumination is limited, such as touchscreen displays.

3.
ACS Appl Mater Interfaces ; 14(19): 22466-22475, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35533373

RESUMEN

Surfaces that are resistant to both liquid fouling and solid fouling are critical for many industrial and biomedical applications. However, surfaces developed to address these challenges thus far have been generally susceptible to mechanical damage. Herein, we report the design and fabrication of robust solid- and liquid-repellent elastomeric coatings that incorporate partially crosslinked lubricating chains within a durable polymer matrix. In particular, we fabricated partially crosslinked omniphobic polyurethane (omni-PU) coatings that can repel a broad range of liquid and solid foulants. The fabricated coatings are an order of magnitude more resistant to cyclic abrasion than current state-of-the-art slippery surfaces. Further through the integration of classic wetting and tribology models, we introduce a new material design parameter (KAR) for abrasion-resistant polymeric coatings. This combination of mechanical durability and broad antifouling properties enables the implication of such coatings to a wide variety of industrial and medical settings, including biocompatible implants, underwater vehicles, and antifouling robotics.

4.
ACS Appl Mater Interfaces ; 13(44): 52063-52072, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34283562

RESUMEN

In this study, systematic geometric tuning of core-shell nanowire (NW) architectures is used to decouple the contributions from light absorption, charge separation, and charge transfer kinetics in photoelectrochemical water oxidation. Core-shell-shell NW arrays were fabricated using a combination of hydrothermal synthesis of ZnO and atomic layer deposition (ALD) of SnO2 and BiVO4. The length and spacing of the NW scaffold, as well as the BiVO4 film thickness, were systematically tuned to optimize the photoelectrochemical performance. A photocurrent of 4.4 mA/cm2 was measured at 1.23 V vs RHE for sulfite oxidation and 4.0 mA/cm2 at 1.80 V vs RHE for water oxidation without a cocatalyst, which are the highest values reported to date for an ALD-deposited photoanode. Electromagnetic simulations demonstrate that spatial heterogeneity in light absorption along the core-shell NW length has a critical role in determining internal quantum efficiency. The mechanistic understandings in this study highlight the benefits of systematically optimizing electrode geometry at the nanoscale when designing photoelectrodes.

5.
ACS Appl Mater Interfaces ; 11(46): 43573-43580, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31702884

RESUMEN

Interfacial fracture and delamination of polymer interfaces can play a critical role in a wide range of applications, including fiber-reinforced composites, flexible electronics, and encapsulation layers for photovoltaics. However, owing to the low surface energy of many thermoplastics, adhesion to dissimilar material surfaces remains a critical challenge. In this work, we demonstrate that surface treatments using atomic layer deposition (ALD) on poly(methyl methacrylate) (PMMA) and fluorinated ethylene propylene (FEP) lead to significant increases in surface energy, without affecting the bulk mechanical response of the thermoplastic. After ALD film growth, the interfacial toughness of the PMMA-epoxy and FEP-epoxy interfaces increased by factors of up to 7 and 60, respectively. These results demonstrate the ability of ALD to engineer the adhesive properties of chemically inert surfaces. However, in the present case, the interfacial toughness was observed to decrease significantly with an increase in humidity. This was attributed to the phenomenon of stress-corrosion cracking associated with the reaction between Al2O3 and water and might have a significant implication for the design of these tailored interfaces.

6.
J Mater Res ; 31(15): 2347-2360, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27563168

RESUMEN

An instrumented indentation method is developed for generating maps of time-dependent viscoelastic and time-independent plastic properties of polymeric materials. The method is based on a pyramidal indentation model consisting of two quadratic viscoelastic Kelvin-like elements and a quadratic plastic element in series. Closed-form solutions for indentation displacement under constant load and constant loading-rate are developed and used to determine and validate material properties. Model parameters are determined by point measurements on common monolithic polymers. Mapping is demonstrated on an epoxy-ceramic interface and on two composite materials consisting of epoxy matrices containing multi-wall carbon nanotubes. A fast viscoelastic deformation process in the epoxy was unaffected by the inclusion of the nanotubes, whereas a slow viscoelastic process was significantly impeded, as was the plastic deformation. Mapping revealed considerable spatial heterogeneity in the slow viscoelastic and plastic responses in the composites, particularly in the material with a greater fraction of nanotubes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...