Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Cell ; 41(4): 807-817.e6, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037617

RESUMEN

Patients with short telomere syndromes (STS) are predisposed to developing cancer, believed to stem from chromosome instability in neoplastic cells. We tested this hypothesis in a large cohort assembled over the last 20 years. We found that the only solid cancers to which patients with STS are predisposed are squamous cell carcinomas of the head and neck, anus, or skin, a spectrum reminiscent of cancers seen in patients with immunodeficiency. Whole-genome sequencing showed no increase in chromosome instability, such as translocations or chromothripsis. Moreover, STS-associated cancers acquired telomere maintenance mechanisms, including telomerase reverse transcriptase (TERT) promoter mutations. A detailed study of the immune status of patients with STS revealed a striking T cell immunodeficiency at the time of cancer diagnosis. A similar immunodeficiency that impaired tumor surveillance was documented in mice with short telomeres. We conclude that STS patients' predisposition to solid cancers is due to T cell exhaustion rather than autonomous defects in the neoplastic cells themselves.


Asunto(s)
Carcinoma de Células Escamosas , Telomerasa , Animales , Ratones , Telómero/genética , Telómero/metabolismo , Carcinoma de Células Escamosas/genética , Inestabilidad Cromosómica , Mutación , Telomerasa/genética , Telomerasa/metabolismo , Linfocitos T/metabolismo
2.
J Clin Invest ; 131(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34343137

RESUMEN

BACKGROUNDGermline mutations in telomerase and other telomere maintenance genes manifest in the premature aging short telomere syndromes. Myelodysplastic syndromes and acute myeloid leukemia (MDS/AML) account for 75% of associated malignancies, but how these cancers overcome the inherited telomere defect is unknown.METHODSWe used ultra-deep targeted sequencing to detect somatic reversion mutations in 17 candidate telomere lengthening genes among controls and patients with short telomere syndromes with and without MDS/AML, and we tested the functional significance of these mutations.RESULTSWhile no controls carried somatic mutations in telomere maintenance genes, 29% (16 of 56) of adults with germline telomere maintenance defects carried at least 1 (P < 0.001), and 13% (7 of 56) had 2 or more. In addition to TERT promoter mutations, which were present in 19%, another 13% of patients carried a mutation in POT1 or TERF2IP. POT1 mutations impaired telomere binding in vitro and some mutations were identical to ones seen in familial melanoma associated with longer telomere length. Exclusively in patients with germline defects in telomerase RNA (TR), we identified somatic mutations in nuclear RNA exosome genes RBM7, SKIV2L2, and DIS3, where loss-of-function upregulates mature TR levels. Somatic reversion events in 6 telomere-related genes were more prevalent in patients who were MDS/AML-free (P = 0.02, RR 4.4, 95% CI 1.2-16.7), and no patient with MDS/AML had more than 1 reversion mutation.CONCLUSIONOur data indicate that diverse adaptive somatic mutations arise in the short telomere syndromes. Their presence may alleviate the telomere crisis that promotes transformation to MDS/AML.FUNDINGThis work was supported by the NIH, the Commonwealth Foundation, the S&R Foundation Kuno Award, the Williams Foundation, the Vera and Joseph Dresner Foundation, the MacMillan Pathway to Independence Award, the American Society of Hematology Scholar Award, the Johns Hopkins Research Program for Medical Students, and the Turock Scholars Fund.


Asunto(s)
Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Telómero/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Femenino , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Regiones Promotoras Genéticas , ARN/genética , Complejo Shelterina , Telomerasa/genética , Acortamiento del Telómero/genética , Proteínas de Unión a Telómeros/genética , Adulto Joven
3.
Chest ; 158(6): 2449-2457, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32710892

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is the most common of short telomere phenotypes. Familial clustering of IPF is common, but the genetic basis remains unknown in more than one-half of cases. We identified a 65-year-old man with familial IPF, short telomere length, and low telomerase RNA levels. He was diagnosed with a short telomere syndrome after developing hematologic complications post-lung transplantation, but no mutations were identified in a clinical testing pipeline. RESEARCH QUESTION: What is the molecular basis underlying the familial IPF and low telomerase RNA levels in this patient? STUDY DESIGN AND METHODS: We analyzed whole-genome sequence data and performed functional molecular studies on cells derived from the patient and his family. RESULTS: We identified a previously unreported synonymous variant c.942G>A p.K314K in DKC1, the gene encoding the dyskerin ribonucleoprotein, which is required for telomerase RNA biogenesis. The mutation created a competing de novo exonic splicing enhancer, and the misspliced product was degraded by nonsense-mediated decay causing an overall dyskerin deficiency in mutation carriers. In silico tools identified other rare silent DKC1 variants that warrant functional evaluation if found in patients with short telomere-mediated disease. INTERPRETATION: Our data point to silent mutation in telomere maintenance genes as a mechanism of familial pulmonary fibrosis. In contrast to DKC1 missense mutations, which primarily manifest in children as dyskeratosis congenita, hypomorphic mutations affecting dyskerin levels likely have a predilection to presenting in adults as pulmonary fibrosis.


Asunto(s)
Trastornos de Fallo de la Médula Ósea , Proteínas de Ciclo Celular/genética , Fibrosis Pulmonar Idiopática , Trasplante de Pulmón , Proteínas Nucleares/genética , Complicaciones Posoperatorias/diagnóstico , ARN/genética , Sepsis , Telomerasa/genética , Anciano , Trastornos de Fallo de la Médula Ósea/sangre , Trastornos de Fallo de la Médula Ósea/diagnóstico , Resultado Fatal , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/fisiopatología , Fibrosis Pulmonar Idiopática/terapia , Trasplante de Pulmón/efectos adversos , Trasplante de Pulmón/métodos , Masculino , Linaje , Filogenia , Sepsis/diagnóstico , Sepsis/etiología , Mutación Silenciosa , Neoplasias Cutáneas/patología , Homeostasis del Telómero/genética , Secuenciación Completa del Genoma/métodos
4.
Genes Dev ; 33(19-20): 1381-1396, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31488579

RESUMEN

Short telomere syndromes manifest as familial idiopathic pulmonary fibrosis; they are the most common premature aging disorders. We used genome-wide linkage to identify heterozygous loss of function of ZCCHC8, a zinc-knuckle containing protein, as a cause of autosomal dominant pulmonary fibrosis. ZCCHC8 associated with TR and was required for telomerase function. In ZCCHC8 knockout cells and in mutation carriers, genomically extended telomerase RNA (TR) accumulated at the expense of mature TR, consistent with a role for ZCCHC8 in mediating TR 3' end targeting to the nuclear RNA exosome. We generated Zcchc8-null mice and found that heterozygotes, similar to human mutation carriers, had TR insufficiency but an otherwise preserved transcriptome. In contrast, Zcchc8-/- mice developed progressive and fatal neurodevelopmental pathology with features of a ciliopathy. The Zcchc8-/- brain transcriptome was highly dysregulated, showing accumulation and 3' end misprocessing of other low-abundance RNAs, including those encoding cilia components as well as the intronless replication-dependent histones. Our data identify a novel cause of human short telomere syndromes-familial pulmonary fibrosis and uncover nuclear exosome targeting as an essential 3' end maturation mechanism that vertebrate TR shares with replication-dependent histones.


Asunto(s)
Proteínas Portadoras/genética , Fibrosis Pulmonar Idiopática/genética , Mutación con Pérdida de Función , Proteínas Nucleares/genética , ARN/metabolismo , Telomerasa/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/fisiopatología , Línea Celular , Cilios/genética , Femenino , Ligamiento Genético , Células HCT116 , Humanos , Fibrosis Pulmonar Idiopática/enzimología , Fibrosis Pulmonar Idiopática/fisiopatología , Masculino , Ratones , Ratones Noqueados , Trastornos del Neurodesarrollo/genética , Linaje , Procesamiento Postranscripcional del ARN/genética , Acortamiento del Telómero/genética
5.
Epigenetics Chromatin ; 11(1): 15, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618374

RESUMEN

BACKGROUND: Meiosis is a specialized germ cell cycle that generates haploid gametes. In the initial stage of meiosis, meiotic prophase I (MPI), homologous chromosomes pair and recombine. Extensive changes in chromatin in MPI raise an important question concerning the contribution of epigenetic mechanisms such as DNA methylation to meiosis. Interestingly, previous studies concluded that in male mice, genome-wide DNA methylation patters are set in place prior to meiosis and remain constant subsequently. However, no prior studies examined DNA methylation during MPI in a systematic manner necessitating its further investigation. RESULTS: In this study, we used genome-wide bisulfite sequencing to determine DNA methylation of adult mouse spermatocytes at all MPI substages, spermatogonia and haploid sperm. This analysis uncovered transient reduction of DNA methylation (TRDM) of spermatocyte genomes. The genome-wide scope of TRDM, its onset in the meiotic S phase and presence of hemimethylated DNA in MPI are all consistent with a DNA replication-dependent DNA demethylation. Following DNA replication, spermatocytes regain DNA methylation gradually but unevenly, suggesting that key MPI events occur in the context of hemimethylated genome. TRDM also uncovers the prior deficit of DNA methylation of LINE-1 retrotransposons in spermatogonia resulting in their full demethylation during TRDM and likely contributing to the observed mRNA and protein expression of some LINE-1 elements in early MPI. CONCLUSIONS: Our results suggest that contrary to the prevailing view, chromosomes exhibit dynamic changes in DNA methylation in MPI. We propose that TRDM facilitates meiotic prophase processes and gamete quality control.


Asunto(s)
Metilación de ADN , Profase Meiótica I , Espermatogénesis , Secuenciación Completa del Genoma/métodos , Animales , Epigénesis Genética , Elementos de Nucleótido Esparcido Largo , Masculino , Ratones , Anotación de Secuencia Molecular , Espermatocitos/química , Espermatogonias/química , Espermatozoides/química , Testículo
6.
Proc Natl Acad Sci U S A ; 114(28): E5635-E5644, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28630288

RESUMEN

The PIWI-interacting RNA (piRNA) pathway is essential for retrotransposon silencing. In piRNA-deficient mice, L1-overexpressing male germ cells exhibit excessive DNA damage and meiotic defects. It remains unknown whether L1 expression simply highlights piRNA deficiency or actually drives the germ-cell demise. Specifically, the sheer abundance of genomic L1 copies prevents reliable quantification of new insertions. Here, we developed a codon-optimized L1 transgene that is controlled by an endogenous mouse L1 promoter. Importantly, DNA methylation dynamics of a single-copy transgene were indistinguishable from those of endogenous L1s. Analysis of Mov10l1-/- testes established that de novo methylation of the L1 transgene required the intact piRNA pathway. Consistent with loss of DNA methylation and programmed reduction of H3K9me2 at meiotic onset, the transgene showed 1,400-fold increase in RNA expression and consequently 70-fold increase in retrotransposition in postnatal day 14 Mov10l1-/- germ cells compared with the wild-type. Analysis of adult Mov10l1-/- germ-cell fractions indicated a stage-specific increase of retrotransposition in the early meiotic prophase. However, extrapolation of the transgene data to endogenous L1s suggests that it is unlikely insertional mutagenesis alone accounts for the Mov10l1-/- phenotype. Indeed, pharmacological inhibition of reverse transcription did not rescue the meiotic defect. Cumulatively, these results establish the occurrence of productive L1 mobilization in the absence of an intact piRNA pathway but leave open the possibility of processes preceding L1 integration in triggering meiotic checkpoints and germ-cell death. Additionally, our data suggest that many heritable L1 insertions originate from individuals with partially compromised piRNA defense.


Asunto(s)
Meiosis , ARN Interferente Pequeño/metabolismo , Retroelementos , Transgenes , Regiones no Traducidas 5' , Animales , Codón , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Masculino , Metilación , Ratones , Ratones Transgénicos , Sistemas de Lectura Abierta , Fenotipo , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Espermatocitos/metabolismo , Espermatogénesis , Testículo/metabolismo
7.
Curr Protoc Cytom ; 72: 7.44.1-7.44.24, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25827485

RESUMEN

Protocols for purification of murine male germ cells by FACS based on Hoechst 33342 (Ho342) dye staining have been reported and optimized. However, the protocols are often challenging to follow, partly due to difficulties related to sample preparation, instrument parameters, data display, and selection strategies. In addition, troubleshooting of flow cytometry experiments usually requires some fluency in technical principles and instrument specifications and settings. This unit describes setup and procedures for analysis and sorting of male meiotic prophase I (MPI) cells and other germ cells. Included are procedures that guide data acquisition, display, gating, and back-gating critical for optimal data visualization and cell sorting. Additionally, a flow cytometry analysis of spermatogenesis-defective testis is provided to illustrate the applicability of the technique to the characterization and purification of cells from mutant testis.


Asunto(s)
Citometría de Flujo/métodos , Espermatocitos/citología , Envejecimiento , Animales , Núcleo Celular/metabolismo , Separación Celular , Técnica del Anticuerpo Fluorescente , Masculino , Profase Meiótica I , Ratones , Análisis de la Célula Individual , Espermatogénesis , Coloración y Etiquetado , Testículo/citología
8.
Cytometry A ; 85(6): 556-65, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24664803

RESUMEN

Meiotic prophase I (MPI), is an initial stage of meiosis characterized by intricate homologous chromosome interactions, synapsis, and DNA recombination. These processes depend on the complex, but poorly understood early MPI events of homologous chromosome search, alignment, and pairing. Detailed molecular investigation of these early events requires isolation of individual MPI substages. Enrichment for Pachytene (P) and Diplotene (D) substages of late MPI was previously accomplished using flow cytometry. However, separation of early MPI spermatocytes, specifically, of Leptotene (L) and Zygotene (Z) substages, has been a challenge due to these cells' similar characteristics. In this report, we describe an optimized Hoechst-33342 (Hoechst)-based flow cytometry approach for isolating individual MPI populations from adult mouse testis. We get significant enrichment for individual L and Z spermatocytes, previously inseparable from each other, and optimize the isolation of other MPI substages. Our flow cytometry approach is a combination of three optimized strategies. The first is optimization of testis dissociation protocol that yields more consistent and reproducible testicular single cell suspension. The second involves optimization of flow cytometric gating protocol where a critical addition to the standard protocol for cell discrimination based on Hoechst fluorescence, involves a back-gating technique based on light scattering parameters. This step specifies selection of individual MPI substages. The third, is an addition of DNA content restriction to the gating protocol to minimize contamination from non-meiotic cells. Finally, we confirm significant enrichment of high-purity Preleptotene (PreL), L, Z, P, and D MPI spermatocytes using stage-specific marker distribution. The technique will facilitate understanding of the molecular events underlying MPI.


Asunto(s)
Citometría de Flujo/métodos , Profase Meiótica I/genética , Espermatocitos/ultraestructura , Espermatogénesis/genética , Animales , Ciclo Celular/genética , Masculino , Ratones , Testículo/ultraestructura
9.
Regul Pept ; 173(1-3): 13-20, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-21903140

RESUMEN

While a high-fat diet when compared to low-fat diet is known to produce overeating and health complications, less is known about the effects produced by fat-rich diets differing in their specific composition of fat. This study examined the effects of a high-fat diet containing relatively high levels of saturated compared to unsaturated fatty acids (HiSat) to a high-fat diet with higher levels of unsaturated fatty acids (USat). A HiSat compared to USat meal caused rats to consume more calories in a subsequent chow test meal. The HiSat meal also increased circulating levels of triglycerides (TG) and expression of the orexigenic peptides, galanin (GAL) in the hypothalamic paraventricular nucleus (PVN) and orexin (OX) in the perifornical lateral hypothalamus (PFLH). A similar increase in TG levels and PVN GAL and PFLH OX was also seen in rats given chronic access to the HiSat compared to USat diet, while neuropeptide Y (NPY) and agouti-related protein (AgRP) in the arcuate nucleus showed decreased expression. The importance of TG in producing these changes was supported by the finding that the TG-lowering medication gemfibrozil as compared to vehicle, when peripherally administered before consumption of a HiSat meal, significantly decreased the expression of OX, while increasing the expression of NPY and AgRP. These findings substantiate the importance of the fat composition in a diet, indicating that those rich in saturated compared to unsaturated fatty acids may promote overeating by increasing circulating lipids and specific hypothalamic peptides, GAL and OX, known to preferentially stimulate the consumption of a fat-rich diet.


Asunto(s)
Grasas de la Dieta/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ácidos Grasos/farmacología , Hormonas Hipotalámicas/metabolismo , Triglicéridos/sangre , Animales , Apetito , Dieta Alta en Grasa , Femenino , Gemfibrozilo/farmacología , Expresión Génica/efectos de los fármacos , Hipolipemiantes/farmacología , Hormonas Hipotalámicas/genética , Hipotálamo/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
10.
Proc Natl Acad Sci U S A ; 107(7): 3141-5, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133632

RESUMEN

Hepatitis C virus (HCV) remains a major public health problem, affecting approximately 130 million people worldwide. HCV infection can lead to cirrhosis, hepatocellular carcinoma, and end-stage liver disease, as well as extrahepatic complications such as cryoglobulinemia and lymphoma. Preventative and therapeutic options are severely limited; there is no HCV vaccine available, and nonspecific, IFN-based treatments are frequently ineffective. Development of targeted antivirals has been hampered by the lack of robust HCV cell culture systems that reliably predict human responses. Here, we show the entire HCV life cycle recapitulated in micropatterned cocultures (MPCCs) of primary human hepatocytes and supportive stroma in a multiwell format. MPCCs form polarized cell layers expressing all known HCV entry factors and sustain viral replication for several weeks. When coupled with highly sensitive fluorescence- and luminescence-based reporter systems, MPCCs have potential as a high-throughput platform for simultaneous assessment of in vitro efficacy and toxicity profiles of anti-HCV therapeutics.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hepacivirus/fisiología , Hepatitis C/fisiopatología , Hepatocitos/virología , Ingeniería de Tejidos/métodos , Anticuerpos Monoclonales/farmacología , Células Cultivadas , Humanos , Internalización del Virus/efectos de los fármacos , Replicación Viral/fisiología
11.
Nature ; 457(7231): 882-6, 2009 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19182773

RESUMEN

Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of much needed specific antiviral therapies and an effective vaccine has been hampered by the lack of a convenient small animal model. The determinants restricting HCV tropism to human and chimpanzee hosts are unknown. Replication of the viral RNA has been demonstrated in mouse cells, but these cells are not infectable with either lentiviral particles bearing HCV glycoproteins (HCVpp) or HCV produced in cell culture (HCVcc) (A.P., M.E. and C.M.R., unpublished observations), suggesting that there is a block at the level of entry. Here we show, using an iterative complementary DNA library screening approach, that human occludin (OCLN) is an essential HCV cell entry factor that is able to render murine cells infectable with HCVpp. Similarly, OCLN is required for the HCV-susceptibility of human cells, because its overexpression in uninfectable cells specifically enhanced HCVpp uptake, whereas its silencing in permissive cells impaired both HCVpp and HCVcc infection. In addition to OCLN, HCVpp infection of murine cells required expression of the previously identified HCV entry factors CD81 (ref. 4), scavenger receptor class B type I (SR-BI, also known as SCARB1) and claudin-1 (CLDN1). Although the mouse versions of SR-BI and CLDN1 function at least as well as the human proteins in promoting HCV entry, both OCLN and CD81 must be of human origin to allow efficient infection. The species-specific determinants of OCLN were mapped to its second extracellular loop. The identification of OCLN as a new HCV entry factor further highlights the importance of the tight junction complex in the viral entry process, and provides an important advance towards efforts to develop small animal models for HCV.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C/virología , Proteínas de la Membrana/metabolismo , Internalización del Virus , Células 3T3 , Animales , Antígenos CD/metabolismo , Células CHO , Línea Celular , Cricetinae , Cricetulus , Regulación de la Expresión Génica , Humanos , Ratones , Ocludina , Tetraspanina 28
12.
J Neurosci ; 28(46): 12107-19, 2008 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19005075

RESUMEN

Recent studies in adult and weanling rats show that dietary fat, in close association with circulating lipids, can stimulate expression of hypothalamic peptides involved in controlling food intake and body weight. In the present study, we examined the possibility that a fat-rich diet during pregnancy alters the development of these peptide systems in utero, producing neuronal changes in the offspring that persist postnatally in the absence of the diet and have long-term consequences. The offspring of dams on a high-fat diet (HFD) versus balanced diet (BD), from embryonic day 6 to postnatal day 15 (P15), showed increased expression of orexigenic peptides, galanin, enkephalin, and dynorphin, in the paraventricular nucleus and orexin and melanin-concentrating hormone in the perifornical lateral hypothalamus. The increased density of these peptide-expressing neurons, evident in newborn offspring as well as P15 offspring cross-fostered at birth to dams on the BD, led us to examine events that might be occurring in utero. During gestation, the HFD stimulated the proliferation of neuroepithelial and neuronal precursor cells of the embryonic hypothalamic third ventricle. It also stimulated the proliferation and differentiation of neurons and their migration toward hypothalamic areas where ultimately a greater proportion of the new neurons expressed the orexigenic peptides. This increase in neurogenesis, closely associated with a marked increase in lipids in the blood, may have a role in producing the long-term behavioral and physiological changes observed in offspring after weaning, including an increase in food intake, preference for fat, hyperlipidemia, and higher body weight.


Asunto(s)
Grasas de la Dieta/efectos adversos , Trastornos Nutricionales en el Feto/metabolismo , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Obesidad/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Animales Recién Nacidos , Regulación del Apetito/fisiología , Peso Corporal/fisiología , Proliferación Celular , Grasas de la Dieta/metabolismo , Femenino , Trastornos Nutricionales en el Feto/fisiopatología , Galanina/metabolismo , Hiperfagia/etiología , Hiperfagia/metabolismo , Hiperfagia/fisiopatología , Hormonas Hipotalámicas/metabolismo , Hipotálamo/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Melaninas/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Obesidad/etiología , Obesidad/fisiopatología , Péptidos Opioides/metabolismo , Orexinas , Hormonas Hipofisarias/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley
13.
Dev Biol ; 269(2): 421-32, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15110710

RESUMEN

Initial studies suggested that spatial organization of the putative polar body contractile ring was determined by the peripheral aster in Spisula [Biol. Bull. 205 (2003) 192]. Here we report detailed supporting observations, including testing of aster and ring function with inhibitors. The metaphase peripheral aster was confirmed to spread cortically in an umbrella-like pattern, with microtubule-poor center. The aster disassembled during anaphase, leaving the spindle docked at the F-actin-poor center of a newly generated cortical F-actin ring that closely approximated the aster in location, measured diameter range, and pattern. Cytochalasin D and latrunculin-B permitted all events except ring and polar body formation. Nocodazole disassembly or taxol stabilization of the peripheral aster produced poorly defined rings or bulging anaphase asters within the ring center, respectively, inhibiting polar body formation. Polar body extrusion occurred at the ring center, the diameter of which diminished. Ring contractility-previously assumed-was verified using blebbistatin, a myosin-II ATPase inhibitor that permitted ring assembly but blocked polar body extrusion. The data support the hypothesis that peripheral aster spreading, perhaps dynein-driven, is causally related to polar body contractile ring formation, with anaphase entry and aster disassembly also required for polar body biogenesis. Previously reported astral spreading during embryonic micromere formation suggests that related mechanisms are involved in asymmetric somatic cytokinesis.


Asunto(s)
Bivalvos/embriología , Actinas/química , Animales , División Celular , Centrosoma/fisiología , Citoesqueleto/química , Microtúbulos/química , Miosina Tipo II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...