RESUMEN
The endocannabinoid system (ECS) is a critical regulatory network composed of endogenous cannabinoids (eCBs), their synthesizing and degrading enzymes, and associated receptors. It is integral to maintaining homeostasis and orchestrating key functions within the central nervous and immune systems. Given its therapeutic significance, we have launched a series of drug discovery endeavors aimed at ECS targets, including peroxisome proliferator-activated receptors (PPARs), cannabinoid receptors types 1 (CB1R) and 2 (CB2R), and monoacylglycerol lipase (MAGL), addressing a wide array of medical needs. The pursuit of new therapeutic agents has been enhanced by the creation of specialized labeled chemical probes, which aid in target localization, mechanistic studies, assay development, and the establishment of biomarkers for target engagement. By fusing medicinal chemistry with chemical biology in a comprehensive, translational end-to-end drug discovery strategy, we have expedited the development of novel therapeutics. Additionally, this strategy promises to foster highly productive partnerships between industry and academia, as will be illustrated through various examples.
Asunto(s)
Química Farmacéutica , Descubrimiento de Drogas , Endocannabinoides , Endocannabinoides/metabolismo , Endocannabinoides/química , Humanos , Industria Farmacéutica , Monoacilglicerol Lipasas/metabolismo , Monoacilglicerol Lipasas/antagonistas & inhibidores , Desarrollo de Medicamentos , AcademiaRESUMEN
The cannabinoid receptor type 1 (CB1R) is pivotal within the endocannabinoid system regulating various signaling cascades with effects in appetite regulation, pain perception, memory formation, and thermoregulation. Still, understanding of CB1R's cellular signaling, distribution, and expression dynamics is very fragmentary. Real-time visualization of CB1R is crucial for addressing these questions. Selective drug-like CB1R ligands with a defined pharmacological profile were investigated for the construction of CB1R fluorescent probes using a reverse design-approach. A modular design concept with a diethyl glycine-based building block as the centerpiece allowed for the straightforward synthesis of novel probe candidates. Validated by computational docking studies, radioligand binding, and cAMP assay, this systematic approach allowed for the identification of novel pyrrole-based CB1R fluorescent probes. Application in fluorescence-based target-engagement studies and live cell imaging exemplify the great versatility of the tailored CB1R probes for investigating CB1R localization, trafficking, pharmacology, and its pathological implications.
Asunto(s)
Colorantes Fluorescentes , Receptor Cannabinoide CB1 , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Receptor Cannabinoide CB1/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Células HEK293 , Ligandos , Pirroles/química , Pirroles/farmacología , Pirroles/síntesis química , Relación Estructura-Actividad , AMP Cíclico/metabolismoRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy with extremely poor patient survival rates. A key reason for the poor prognosis is the lack of effective diagnostic tools to detect the disease at curable, premetastatic stages. Tumor surgical resection is PDAC's first-line treatment, however distinguishing between cancerous and healthy tissue with current imaging tools remains a challenge. In this work, we report a DOTA-based fluorescent probe targeting plectin-1 for imaging PDAC with high specificity. To enable heterogeneous functionalization of the DOTA-core with multiple targeting peptide units and the fluorophore, a novel, fully clickable synthetic route that proceeds in one pot was developed. Extensive validation of the probe set the stage for PDAC detection in mice and human tissue. Altogether, these findings may pave the way for improved clinical understanding and early detection of PDAC progression as well as more accurate resection criteria.
Asunto(s)
Medios de Contraste , Compuestos Heterocíclicos con 1 Anillo , Neoplasias Pancreáticas , Plectina , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Plectina/metabolismo , Animales , Medios de Contraste/química , Ratones , Compuestos Heterocíclicos con 1 Anillo/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/patología , Imagen ÓpticaRESUMEN
Secretoglobin (SCGB) 3A2 belongs to an intriguing family of small, secreted proteins present only in mammals. Although members of the SCGB protein family have distinct amino acid sequences, they share structural similarities. Of particularly interest is the not yet fully understood self-assembly ability of SCGBs, which arise from covalent disulfide dimerization and non-covalent oligomerization. Recently, SCGB3A2 has attracted attention for its singular expression profile in airways. However, the knowledge on SCGB3A2 (patho)physiology derives exclusively from in vivo and complex ex vivo mixtures, which hampers characterization of the mechanisms driving SCGB3A2 structural behavior. Herein, we document the chemical synthesis of SCGB3A2 in multi-milligram quantities. Key to access both monomeric and homodimeric SCGB3A2 analogues was the use of KAHA ligation and enabled masking of the cysteine residue. The synthetic proteins were used to investigate the SCGB3A2 self-assembly profile, confirming their high propensity to dimerization even in the absence of the key Cys residue.
Asunto(s)
Dimerización , Humanos , Multimerización de Proteína , Procesos FotoquímicosRESUMEN
Dysfunctional phenotype of microglia, the primary brain immune cells, may aggravate Alzheimer's disease (AD) pathogenesis by releasing proinflammatory factors, such as nitric oxide (NO). The endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are bioactive lipids increasingly recognised for their essential roles in regulating microglial activity both under normal and AD-driven pathological conditions. To investigate the possible impact of chronic exposure to ß-amyloid peptides (Aß) on the microglial endocannabinoid signalling, we characterised the functional expression of the endocannabinoid system on neonatal microglia isolated from wild-type and Tg2576 mice, an AD-like model, which overexpresses Aß peptides in the developing brain. We found that Aß-exposed microglia produced 2-fold more 2-AG than normal microglia. Accordingly, the expression levels of diacylglycerol lipase-α (DAGLα) and monoacylglycerol lipase (MAGL), the main enzymes responsible for synthesising and hydrolysing 2-AG, respectively, were consistently modified in Tg2576 microglia. Furthermore, compared to wild-type cells, transgenic microglia basally showed increased expression of the cannabinoid 2 receptor, typically upregulated in an activated proinflammatory phenotype. Indeed, following inflammatory stimulus, Aß-exposed microglia displayed an enhanced production of NO, which was abolished by pharmacological inhibition of DAGLα. These findings suggested that exposure to Aß polarises microglial cells towards a pro-AD phenotype, possibly by enhancing 2-AG signalling.
Asunto(s)
Enfermedad de Alzheimer , Microglía , Ratones , Animales , Microglía/metabolismo , Endocannabinoides/metabolismo , Transducción de Señal/fisiología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Receptores de Cannabinoides/metabolismo , Ratones TransgénicosRESUMEN
Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs.
RESUMEN
The G-protein-coupled cannabinoid receptor type 2 (CB2R) is a key element of the endocannabinoid (EC) system. EC/CB2R signaling has significant therapeutic potential in major pathologies affecting humans such as allergies, neurodegenerative disorders, inflammation or ocular diseases. CB2R agonism exerts anti-inflammatory and tissue protective effects in preclinical animal models of cardiovascular, gastrointestinal, liver, kidney, lung and neurodegenerative disorders. Existing ligands can be subdivided into endocannabinoids, cannabinoid-like and synthetic CB2R ligands that possess various degrees of potency on and selectivity against the cannabinoid receptor type 1. This review is an account of granted CB2R ligand patents from 2010 up to the present, which were surveyed using Derwent Innovation®.
Asunto(s)
Antiinflamatorios , Endocannabinoides , Animales , Humanos , Ligandos , Patentes como Asunto , Receptores de Cannabinoides , Transducción de SeñalRESUMEN
Pharmacological modulation of cannabinoid type 2 receptor (CB2R) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CB2R signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CB2R fluorescent probes, used successfully across applications, species, and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CB2R specificity was demonstrated by competition experiments in living cells expressing CB2R at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Colorantes Fluorescentes/química , Microglía/metabolismo , Receptor Cannabinoide CB2/análisis , Animales , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Sondas Moleculares/química , Imagen Óptica , Sensibilidad y Especificidad , Transducción de SeñalRESUMEN
The broader and systematic application of a novel scaffold is often hampered by the unavailability of a short and reliable synthetic access. We investigated a new strategy for the design and synthesis of an array of N2-substituted aza-2H-indazole derivatives as potential kinase inhibitors. Guided by a rational ligand alignment approach to qualify the so-far underrepresented aza-2H-indazole scaffold, indazoles were connected at the N2 position with a phenyl spacer and an arylsulfonamide or amide linkage. Initial profiling against a panel of 30 kinases confirmed the inâ silico predicted selectivity bias. A synthesized focused library of 52 different aza-2H-indazole derivatives showed good initial selective inhibition against SGK1, Tie2, and SRC kinases, with the best representatives having IC50 values in the range of 500â nm. In a comparative computational study, these data were analyzed and rationalized in light of docking studies.