Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Aquat Toxicol ; 267: 106830, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198987

RESUMEN

Environmental pollution is considered to lead to Ulva sp. green tides. Nevertheless, nutrients with high concentrations inhibit algae which may be damaged by antibiotics, such as OTC (oxytetracycline). Thus, Ulva sp. algae might pay a physiological cost under nutrient-OTC combined pressures. If this hypothesis is confirmed, Ulva sp. algae cannot easily form green tides, or green tides are difficult to maintain. To test this hypothesis, an uniform design experiment during which OTC, ammonia (NH4-N) and phosphate (PO4-P) were factors was set to simulate nutrient-OTC combined pressures, and Ulva lactuca was exposed to the pressures for 96 h. The TN (total nitrogen, CTN) or TP (total phosphorus, CTP) content in U. lactuca increased with increasing nutrient concentrations, as CTN = 21.206±1.000+ 1.227±0.418NH4-N × PO4-P (R2 = 0.282, p < 0.05) and CTP = 1.886±0.266+ 0.877±0.126PO4-P (R2 = 0.689, p < 0.05), respectively. The increase in dry weight of U. lactuca (Wdry) had a relationship with combined pressures, Wdry = 0.011±0.029 - 0.036±0.014PO4-P (R2 = 0.243, p < 0.05), i.e., the algal growth was inhibited by increasing PO4-P concentration. The SOD (Superoxide dismutase) activity (ASOD) was stimulated by OTC, as ASOD = 127.868±8.741+9.587±4.179 OTC (R2 = 0.193, p < 0.05). The contents of Chl a and b (Ca and Cb) were negatively affected by OTC or PO4-P with high concentration, as Ca = 0.566±0.042 - 0.024±0.022 OTC × PO4-P (R2 = 0.179, p < 0.05) and Cb = 0.512±0.043-0.044±0.020PO4-P (R2 = 0.180, p < 0.05). Thus, too high concentrations of PO4-P or OTC may hinder the formation and maintenance of Ulva sp. green tides.


Asunto(s)
Algas Comestibles , Oxitetraciclina , Ulva , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Nutrientes , Superóxido Dismutasa
2.
Mar Pollut Bull ; 184: 114215, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36307947

RESUMEN

Antibiotics are frequently used in aquaculture as feed additives and finally enter the marine environment that can pose potential threat to humans. In this study, magnetic molecularly imprinted nanocomposites were prepared by surface imprinting and applied as selective sorbents for specific capture of doxycycline. A multivariate approach based on response surface methodology with Box-Behnken design was adopted to optimize the dispersive solid-phase extraction of doxycycline from marine sediment. Three key parameters, including adsorbent amount and type of washing/eluting solvent, were screened. Under optimum conditions, the limit of detection was 0.03 µg g-1 with good linearity from 0.5 to 20 µg g-1 followed by HPLC detection. Finally, two sediment samples were analysed and satisfactory recoveries between 90.60 % and 93.76 % were obtained with acceptable relative standard deviations (≤4.12 %), suggesting a promising applicability of the developed method for efficient extraction and sensitive quantification of antibiotics in complex marine environmental matrix.


Asunto(s)
Impresión Molecular , Humanos , Cromatografía Líquida de Alta Presión/métodos , Impresión Molecular/métodos , Doxiciclina , Polímeros/química , Extracción en Fase Sólida/métodos , Sedimentos Geológicos , Fenómenos Magnéticos , Antibacterianos
3.
Mar Pollut Bull ; 173(Pt B): 113068, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34689077

RESUMEN

Novel molecularly imprinted polymer (MIP) microspheres using functionalized chitosan as eco-friendly substrates were prepared by surface imprinting method and applied as drug delivery carriers to provide extended-release of florfenicol (FF) in seawater. The chitosan-based composites were characterized by scanning electron microscopy and Fourier transforms infrared spectroscopy analyses. The swelling behavior, adsorption capability, and selectivity for FF were investigated. The results show that the MIPs possessed high drug loading saturation capacity and specific recognition affinity for FF. The release studies of MIPs as drug delivery carriers were evaluated in natural seawater. The microspheres exhibited slow sustained release profiles of FF and the release behavior conformed to the first-order kinetic equation. The imprinted microspheres as drug delivery devices would be a promising application for improving the efficacy of the antibiotic without exposing the ecological system to excess FF in aquaculture.


Asunto(s)
Quitosano , Impresión Molecular , Adsorción , Portadores de Fármacos , Microesferas , Agua de Mar , Tianfenicol/análogos & derivados
4.
Membranes (Basel) ; 10(9)2020 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-32933156

RESUMEN

In this study, the characteristics of activated sludge flocs were investigated and their effects on the evolution of membrane fouling were considered in the anaerobic membrane bioreactors (AnMBR), which were operated at 25 and 35 °C for municipal wastewater treatment. It was found that the membrane fouling rate of the AnMBR at 25 °C was more severe than that at 35 °C. The membrane fouling trends were not consistent with the change in the concentration of soluble microbial product (SMP). The larger amount of SMP in the AnMBR at 35 °C did not induce more severe membrane fouling than that in the AnMBR at 25 °C. However, the polysaccharide and protein concentration of extracellular polymeric substance (EPS) was higher in the AnMBR at 25 °C in comparison with that in the AnMBR at 35 °C, and the protein/polysaccharide ratio of the EPS in the AnMBR at 25 °C was higher in contrast to that in the AnMBR at 35 °C. Meanwhile, the fouling tendencies measured for the AnMBRs could be related to the characteristics of loosely bound EPS and tightly bound EPS. The analysis of the activated sludge flocs characteristics indicated that a smaller sludge particle size and more fine flocs were observed at the AnMBR with 25 °C. Therefore, the membrane fouling potential in the AnMBR could be explained by the characteristics of activated sludge flocs.

5.
Mar Pollut Bull ; 158: 111363, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32568079

RESUMEN

This research describes the application of magnetic molecularly imprinted nano-sized polymers (MMIPs) for the selective extraction and fast detection of malachite green (MG) from marine sediment samples followed by UV-Vis spectrophotometry. The novel material was prepared by surface imprinting using methacrylic acid as the functional monomer for fixing the template molecules. The polymers obtained at each step were thoroughly studied by transmission electron microscopy, FTIR spectroscopy and thermogravimetric analysis. Simultaneously, the adsorption performances of the resulting nanoparticles were analysed in detail and an excellent affinity with the MG was revealed. Further, the main parameters of magnetic molecular imprinted solid-phase extraction (MMIP-SPE) were screened via multivariate optimization methods. The magnetic nanoparticles were used as special adsorbents to directly extract MG from crude marine sediment extracts. The developed method exhibits satisfactory recoveries from the spiked samples, ranging from 80.40 to 92.96% with an RSD of less than 5.18% (n = 3).


Asunto(s)
Impresión Molecular , Polímeros , Adsorción , Sedimentos Geológicos , Fenómenos Magnéticos , Colorantes de Rosanilina , Extracción en Fase Sólida , Espectrofotometría
6.
Mikrochim Acta ; 186(7): 428, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31187284

RESUMEN

A straightforward method has been developed for selective separation of chloramphenicol (CAP) from marine sediment samples. Magnetic molecularly imprinted nanoparticles (NPs) of type Fe3O4@SiO2 were prepared via surface imprinting with CAP. The NPs were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy and thermogravimetric analysis. They have perfect core-shell structure, excellent thermal stability, high affinity and selectivity to CAP. The imprinting factor and Scatchard analysis also reveal good specific recognition to the template. The imprinted NPs were applied as sorbents for fast and selective extraction of CAP from marine sediment samples. The experimental parameters affecting separation efficiency were optimized. Three marine sediment samples were analyzed. Following desorption with methanol/water (90/10,v/v), CAP was quantified by HPLC with DAD detection. The limit of detection is 0.1 µg L-1 with a good linear response between 0.1-20 mg L-1 of CAP concentration (R2 = 0.999, n = 3). The method exhibits satisfactory recoveries from spiked samples (77.9-102.5%) and has low relative standard deviations (<6.3%). The magnetic material can be used at least 5 times by the regeneration without any loss of selectivity and adsorption capability. Graphical abstract Schematic presentation of magnetic molecularly imprinted nanoparticles (MMIPs) as sorbent for fast extraction and chromatographic analysis of chloramphenicol (CAP) from marine sediments. CAP-MMIPs are synthesized by surface imprinting method using 3-methacryloxy propyl trimethoxy silane (MPS) as the silane coupling agent.

7.
Mar Pollut Bull ; 125(1-2): 250-253, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28826924

RESUMEN

The multiple-contamination of heavy metals and nutrients worsens increasingly and Ulva sp. green tide occurs almost simultaneously. To reveal the biological mechanism for outbreak of the green tide, Ulva pertusa was exposed to seven-day-multiple-contamination. The relation between pH variation (VpH), Chl a content, ratio of (Chl a content)/(Chl b content) (Rchla/chlb), SOD activity of U. pertusa (ASOD) and contamination concentration is [Formula: see text] (p<0.05), Cchla=0.88±0.09-0.01±0.00×CCd (p<0.05), [Formula: see text] (p<0.05), and [Formula: see text] (p<0.05), respectively. Cammonia, CCd and CZn is concentration of ammonia, Cd2+ and Zn2+, respectively. Comparing the contamination concentrations of seawaters where Ulva sp. green tide occurred and the contamination concentrations set in the present work, U. pertusa can adapt to multiple-contaminations in these waters. Thus, the adaption to multiple-contamination may be one biological mechanism for the outbreak of Ulva sp. green tide.


Asunto(s)
Amoníaco/toxicidad , Cadmio/toxicidad , Ulva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Zinc/toxicidad , Adaptación Fisiológica , Amoníaco/análisis , Cadmio/análisis , Clorofila/metabolismo , Clorofila A , Concentración de Iones de Hidrógeno , Agua de Mar/análisis , Superóxido Dismutasa/metabolismo , Ulva/crecimiento & desarrollo , Ulva/metabolismo , Contaminantes Químicos del Agua/análisis , Zinc/análisis
8.
PLoS One ; 12(1): e0170401, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28135313

RESUMEN

Suaeda salsa community is a vegetation type in saline-alkali areas. Weed invasion and colonization in S. salsa communities lead to fragmentationsof S. salsa communities. The colonization of invaded weeds in S. salsa communities is related to community succession of saline-alkali zones. The fragmented S. salsa community may be restored if the mechanism of invaded weed colonization in S. salsa communities is clearly elucidated. Thus, we studied the ecological stoichiometric characteristics of soils and plants in a salt marsh to explain the high colonization possibility of invaded weeds in S. salsa communities. In October 2014, soils and plants were collected from Dongfeng Salt Marsh, Jiaozhou Bay, Shandong Province, China. The ratio of Ex-N/Ex-P in soil was less than 13, which suggests a relative nitrogen limitation for the primary production in the zone. The minimum phosphorus content in plants was higher than 1 mg g-1, whereas the maximum nitrogen content in plants was less than 13 mg g-1. These results imply that phosphorus was abundant, whereas nitrogen was deficient in the area. The plants in the salt marsh may be limited by nitrogen. Given the relatively lower nitrogen contents in Cyperus glomeratus, Echinochloa crusgalli, and Aster subulatus than that in S. salsa, these three species exhibited higher competitiveness than S. salsa did when nitrogen was limited in primary production. These weed species may colonize highly in S. salsa communities. Moreover, nitrogen fertilization might be effective to maintain S. salsa community in Dongfeng Salt Marsh, whereas its effects on controlling weeds colonization in S. salsa communities need more studies to verify.


Asunto(s)
Ecosistema , Malezas/metabolismo , Chenopodiaceae/metabolismo , Nitrógeno/análisis , Fósforo/análisis , Suelo/química , Especificidad de la Especie , Humedales
9.
Mar Pollut Bull ; 115(1-2): 149-153, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27979616

RESUMEN

Harmful algal blooms which may be limited by phosphorus outbreak increases currently and ocean acidification worsens presently, which implies that ocean acidification might lead to phosphorus eutrophication. To verify the hypothesis, oxic sediments were exposed to seawater with different pH 30days. If pH was 8.1 and 7.7, the total phosphorus (TP) content in sediments was 1.52±0.50 and 1.29±0.40mg/g. The inorganic phosphorus (IP) content in sediments exposed to seawater with pH8.1 and 7.7 was 1.39±0.10 and 1.06±0.20mg/g, respectively. The exchangeable phosphorus (Ex-P) content in sediments was 4.40±0.45 and 2.82±0.15µg/g, if seawater pH was 8.1 and 7.7. Ex-P and IP contents in oxic sediments were reduced by ocean acidification significantly (p<5%). The reduced phosphorus in sediments diffused into water, which implied that ocean acidification was one potential facilitator of phosphorus eutrophication in oxic conditions.


Asunto(s)
Eutrofización , Sedimentos Geológicos/química , Fósforo , Ácidos , China , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Océanos y Mares , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA